精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=3sin(2x+$\frac{π}{6}$).
(1)求函数f(x)的周期;
(2)求函数f(x)的单调增区间;
(3)当x取何值时,f(x)有最大值,最大值为多少?

分析 由条件根据函数y=Asin(ωx+φ)的周期为$\frac{2π}{ω}$,由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z可解得函数f(x)的单调增区间,利用正弦函数的图象和性质即可得解.

解答 解:(1)函数y=3sin(2x+$\frac{π}{6}$)的最小正周期为T=$\frac{2π}{2}$=π,
(2)由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z可解得函数f(x)的单调增区间是:[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
(3)根据正弦函数的值域可得:当2x+$\frac{π}{6}$=2kπ+$\frac{π}{2}$,k∈Z时,即x=kπ+$\frac{π}{6}$,k∈Z时,
函数y=3sin(2x+$\frac{π}{6}$)的最大值为3.

点评 本题主要考查函数y=Asin(ωx+φ)的周期性和值域及单调性,利用了函数y=Asin(ωx+φ)的周期为$\frac{2π}{ω}$,正弦函数的值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知f(α)=$\frac{{sin(5π-α)cos(π+α)cos(\frac{3π}{2}+α)}}{{cos(α+\frac{π}{2})tan(3π-α)sin(α-\frac{3π}{2})}}$
(1)化简f(α);
(2)若α是第三象限角,且$cos(\frac{3π}{2}-α)=\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某聋哑研究机构,对聋哑关系进行抽样调查,在耳聋的657人中有416人哑,而另外不聋的680人中有249人哑,你能运用这组数据,得出相应结论吗?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知抛物线的方程为y2=4x,过其焦点F的宜线l与抛物线交于A,B两点,若S△AOF=S△BOF(O为坐标原点),则|AB|=(  )
A.$\frac{16}{3}$B.$\frac{8}{3}$C.$\frac{4}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一位老师与四位学生站一排照相,教师必须站在正中的站法有(  )
A.4种B.5种C.24种D.120种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某人花费12.8万元从出租车公司购买了一辆出租车用于运营服务,每年应缴给出租车公司各项管理费用4万元;应缴汽车保养维修等费用第一年为0.4万元,从第二年开始每年比上一年多0.4万元,从第二年开始每年比上一年多0.4万元,若每年运营收入为11万元,记出租车使用n(n≤10,n∈N*)年的累计盈利为P(n)(累计盈利=累计收入-累计管理费-累计保养维修-车辆购置费)
(1)问该出租车投入运营后,第几年开始盈利(累计盈利额为正值)?
(2)问该出租车使用几年更换新车最合算(该出租车每年平均盈利最多)?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=lnx-$\frac{1}{2}$ax2-2x的单调递减区间为(m,m+2),则a的值为$\frac{1-\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的正整数n,an与2的等差中项等于Sn与2的等比中项.
(1)写出数列的前三项;
(2)猜出通项公式,用数列归纳加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某校从6名教师中选派3名教师同时去3个贫困地区支教,每个地区1人,其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案有(  )
A.24种B.42种C.36种D.48种

查看答案和解析>>

同步练习册答案