8£®Ä³ÈË»¨·Ñ12.8ÍòÔª´Ó³ö×â³µ¹«Ë¾¹ºÂòÁËÒ»Á¾³ö×â³µÓÃÓÚÔËÓª·þÎñ£¬Ã¿ÄêÓ¦½É¸ø³ö×â³µ¹«Ë¾¸÷Ïî¹ÜÀí·ÑÓÃ4ÍòÔª£»Ó¦½ÉÆû³µ±£ÑøÎ¬Ð޵ȷÑÓõÚÒ»ÄêΪ0.4ÍòÔª£¬´ÓµÚ¶þÄ꿪ʼÿÄê±ÈÉÏÒ»Äê¶à0.4ÍòÔª£¬´ÓµÚ¶þÄ꿪ʼÿÄê±ÈÉÏÒ»Äê¶à0.4ÍòÔª£¬ÈôÿÄêÔËÓªÊÕÈëΪ11ÍòÔª£¬¼Ç³ö×⳵ʹÓÃn£¨n¡Ü10£¬n¡ÊN*£©ÄêµÄÀÛ¼ÆÓ¯ÀûΪP£¨n£©£¨ÀÛ¼ÆÓ¯Àû=ÀÛ¼ÆÊÕÈë-ÀۼƹÜÀí·Ñ-ÀۼƱ£ÑøÎ¬ÐÞ-³µÁ¾¹ºÖ÷ѣ©
£¨1£©Îʸóö×⳵ͶÈëÔËÓªºó£¬µÚ¼¸Ä꿪ʼӯÀû£¨ÀÛ¼ÆÓ¯Àû¶îΪÕýÖµ£©£¿
£¨2£©Îʸóö×⳵ʹÓü¸Äê¸ü»»Ð³µ×îºÏË㣨¸Ã³ö×⳵ÿÄêÆ½¾ùÓ¯Àû×î¶à£©£¿

·ÖÎö £¨1£©ÒÀÌâÒâÓ¦½ÉÆû³µ±£ÑøÎ¬Ð޵ȷÑÓÃÊÇÒÔ0.4ΪÊ×Ïî¡¢0.4Ϊ¹«²îµÄµÈ²îÊýÁУ¬ÀûÓá°ÀÛ¼ÆÓ¯Àû=ÀÛ¼ÆÊÕÈë-ÀۼƹÜÀí·Ñ-ÀۼƱ£ÑøÎ¬ÐÞ-³µÁ¾¹ºÖ÷ѡ±¼ÆËã¼´µÃ½áÂÛ£»
£¨2£©Í¨¹ý£¨1£©¡¢ÀûÓûù±¾²»µÈʽ¼ÆËã¼´µÃ½áÂÛ£®

½â´ð ½â£º£¨1£©ÒÀÌâÒ⣬Ӧ½ÉÆû³µ±£ÑøÎ¬Ð޵ȷÑÓÃÊÇÒÔ0.4ΪÊ×Ïî¡¢0.4Ϊ¹«²îµÄµÈ²îÊýÁУ¬
¡àʹÓÃnÄêÓ¦½ÉÆû³µ±£ÑøÎ¬Ð޵ȷÑÓÃΪ$\frac{n£¨0.4+0.4n£©}{2}$ÍòÔª£¬
¡àP£¨n£©=11n-4n-$\frac{n£¨0.4+0.4n£©}{2}$-12.8
=-0.2n2+6.8n-12.8
=-0.2£¨n-17£©2+45£¨n¡Ü10£¬n¡ÊN*£©£¬
ÓÉP£¨n£©£¾0£¬¿ÉÖª£º2£¼n£¼32£¬
¡à¸Ã³ö×⳵ͶÈëÔËÓªºó£¬µÚ3Ä꿪ʼӯÀû£»
£¨2£©ÓÉ£¨1£©¿ÉÖª£¬¸Ã³ö×â³µÄêÆ½¾ùÓ®ÀûΪ£º
$\frac{P£¨n£©}{n}$=6.8-0.2£¨n+$\frac{64}{n}$£©¡Ü6.8-0.2•2$\sqrt{n•\frac{64}{n}}$=36£¬
µ±ÇÒ½öµ±n=$\frac{64}{n}$¼´n=8ʱȡµÈºÅ£¬
¡à¸Ã³ö×⳵ʹÓÃ8Äê¸ü»»Ð³µ×îºÏË㣮

µãÆÀ ±¾Ì⿼²éº¯ÊýÄ£Ð͵ÄÑ¡ÔñÓëÓ¦Óã¬ÅªÇåÌâÒâÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Ô²ÖùÐνðÊôÒûÁϹ޵ÄÈÝ»ýΪ16¦Ðcm3£¬ËüµÄ¸ßÊÇ4cm£¬µ×Ãæ°ë¾¶ÊÇ2cmʱ¿ÉʹËùÓòÄÁÏ×îÊ¡£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªÊýÁÐ{an}µÄǰÎåÏî1¡¢-3¡¢5¡¢-7¡¢9£¬²Â³öËüµÄÒ»¸öͨÏʽ£¨-1£©n+1£¨2n-1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=cos2x-2asinx-a£¨a¡ÊR£©£®
£¨1£©Èôº¯ÊýΪżº¯Êý£¬ÇóaµÄÖµ£»
£¨2£©Èôº¯ÊýµÄ×î´óֵΪg£¨a£©£¬µ±·½³Ìg£¨x£©=kxÓÐ1¸ö¸ùʱ£¬ÇókµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=3sin£¨2x+$\frac{¦Ð}{6}$£©£®
£¨1£©Çóº¯Êýf£¨x£©µÄÖÜÆÚ£»
£¨2£©Çóº¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼ä£»
£¨3£©µ±xÈ¡ºÎֵʱ£¬f£¨x£©ÓÐ×î´óÖµ£¬×î´óֵΪ¶àÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔÚ¡÷ABCÖУ¬AC=7£¬ADΪ¡ÏBACµÄ½Çƽ·ÖÏß½»BCÓÚD£¬ÇÒADµÄ³¤ÎªÕûÊý£¬DC=4$\sqrt{2}$£¬cos¡ÏDAC=$\frac{3}{5}$£®
£¨1£©ÇóADµÄ³¤£»
£¨2£©ÇócosBµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖª¦Ð£¼¦Á£¼$\frac{3}{2}$¦Ð£¬sin¦Á=-$\frac{4}{5}$£¬ÇóÏÂÁи÷ʽµÄÖµ£º
£¨1£©$\frac{{2{{sin}^2}¦Á+sin2¦Á}}{cos2¦Á}$£»
£¨2£©tan£¨¦Á-$\frac{5}{4}$¦Ð£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×øÏµÖУ¬½Ç¦Á£¬¦Â£¬¦ÃµÄÖÕ±ßΪxÖáµÄÕý°ëÖᣬ½Ç¦Á£¬¦Â£¬¦ÃµÄ·¶Î§¾ùΪ[0£¬¦Ð]£¬ÇҽǦÁ£¬¦Â£¬¦ÃµÄÖձ߹ØÓڽǦõÄÖձ߶Գƣ®
£¨1£©Èô½Ç¦ÁµÄÖձ߾­¹ýµãA£¨4£¬3£©£¬½Ç¦ÂµÄÖձ߾­¹ýµãB£¨-12£¬5£©£¬Ïß¶ÎABÓë½Ç¦ÃµÄÖձ߽»ÓÚµãD£¬ÇóµãDµÄ×ø±ê£»
£¨2£©Èô½Ç¦ÃµÄÖÕ±ßËùÔÚµÄÉäÏß·½³ÌÊÇy=-2x£¨x¡Ý0£©£¬Çósin£¨3¦Á+3¦Â£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÔÚ¡÷ABCÖУ¬A£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÓÐ$\sqrt{3}$acosC-csinA=0£®
£¨¢ñ£©Çó½ÇCµÄ´óС£»
£¨¢ò£©Èô$a=\sqrt{13}$£¬S¡÷ABC=3$\sqrt{3}$£¬Çób£¬cµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸