【题目】如图,楔形几何体由一个三棱柱截去部分后所得,底面侧面,,楔面是边长为2的正三角形,点在侧面的射影是矩形的中心,点在上,且
(1)证明:平面;
(2)求楔面与侧面所成二面角的余弦值.
【答案】(1)见解析;(2).
【解析】
(1)做辅助线连接交于,连接,.根据平面,得到平面平面,又平面平面,则平面平面,
利用勾股定理计算出,再根据,,,得,,则可证得平面.
(2)法一:向量法:建立如图所示的空间直角坐标系,列出各点的坐标求出向量,.求出两个平面的法向量,利用余弦公式即可求出楔面与侧面所成二面角的余弦值.
法二:几何法:取的中点,连接,.即为楔面与侧面所成二面角的平面角.求出、、各边长度,即可求出,则得到楔面与侧面所成二面角的余弦值.
解:(1)证明:如图,连接交于,连接,.
则是的中点,.
因为平面,所以平面平面,
又平面平面,
所以平面平面,
根据题意,四边形和是全等的直角梯形,
三角形和是全等的等腰直角三角形,
所以,.
在直角三角形中,,
所以,,,
于是,,
所以,.
因为平面,,
所以平面.
(2)法一:向量法:以为坐标原点,,所在直线分别为轴、轴,建立如图所示的空间直角坐标系,则,,,,.
设平面的一个法向量为,
则,取,
平面的一个法向量为,
所以,
所以楔面与侧面所成二面角的余弦值为.
法二:几何法:如图,取的中点,连接,.
即为楔面与侧面所成二面角的平面角.
在直角三角形中,,,
所以,
所以楔面与侧面所成二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程是 (为参数),以原点为极点, 轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.
(Ⅰ)求曲线的普通方程与直线的直角坐标方程;
(Ⅱ)已知直线与曲线交于, 两点,与轴交于点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆与抛物线有一个相同的焦点,且该椭圆的离心率为,
(Ⅰ)求该椭圆的标准方程:
(Ⅱ)求过点的直线与该椭圆交于A,B两点,O为坐标原点,若,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(多选)已知函数,其中正确结论的是( )
A.当时,函数有最大值.
B.对于任意的,函数一定存在最小值.
C.对于任意的,函数是上的增函数.
D.对于任意的,都有函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数.
(1)若,,求函数的极值;
(2)若是函数的一个极值点,试求出关于的关系式(即用表示),并确定的单调区间;(提示:应注意对的取值范围进行讨论)
(3)在(2)的条件下,设,函数,若存在使得成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学专著《九章算术》中有一个“两鼠穿墙题”,其内容为:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.问何日相逢?各穿几何?”如图的程序框图源于这个题目,执行该程序框图,若输入x=20,则输出的结果为( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是梯形,,,是正三角形,为的中点,平面平面.
(1)求证:平面;
(2)在棱上是否存在点,使得二面角的余弦值为?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的各项均为正数,,且对任意,都有,数列前n项的和.
(1)若数列是等比数列,求的值和;
(2)若数列是等差数列,求和的关系式;
(3),当时,求证: 是一个常数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com