精英家教网 > 高中数学 > 题目详情
设函数在(0,+∞)上单调递增,则f (a+1)与f (2)的大小关系是
A.f (a+1)= f (2)B.f (a+1)> f (2)
C.f (a+1)< f (2)D.不确定
B

试题分析:结合对数函数的单调性的性质,由于函数在(0,+∞)上单调递增,那么说明底数a>1,因此a+1>2,那么对于对数函数而言,那么变量大的函数值必然要大,由于a+1>2,则可知函数值满足f (a+1)> f (2),选B.
点评:解决该试题的关键是利用函数的单调性,来确定出参数a的范围,然后结合其性质来判定函数值的大小关系,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知定义在R上的奇函数和偶函数满足
,若,则  
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有一批运动服装原价为每套80元,两个商场均有销售,为了吸引顾客,两商场纷纷推出优惠政策。甲商场的优惠办法是:买一套减4元,买两套每套减8元,买三套每套减12元,......,依此类推,直到减到半价为止;乙商场的优惠办法是:一律7折。某单位欲为每位员工买一套运动服装,问选择哪个商场购买更省钱?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知常数,函数
(1)求的值;   
(2)讨论函数上的单调性;
(3)求出上的最小值与最大值,并求出相应的自变量的取值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
(本小题满分12分)某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.

(1)分别写出用表示和用表示的函数关系式(写出函数定义域);
(2)怎样设计能使S取得最大值,最大值为多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)通常情况下,同一地区一天的温度随时间变化的曲线接近于函数的图像.2013年1月下旬荆门地区连续几天最高温度都出现在14时,最高温度为;最低温度出现在凌晨2时,最低温度为零下.
(Ⅰ)请推理荆门地区该时段的温度函数
的表达式;
(Ⅱ)29日上午9时某高中将举行期末考试,如果温度低于,教室就要开空调,请问届时学校后勤应该送电吗?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数的导函数,则不等式的解集为             

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对实数,定义运算“”: 设函数,若函数的图像与轴恰有两个公共点,则实数的取值范围是(  )                                                                           
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案