精英家教网 > 高中数学 > 题目详情
(本题满分12分)通常情况下,同一地区一天的温度随时间变化的曲线接近于函数的图像.2013年1月下旬荆门地区连续几天最高温度都出现在14时,最高温度为;最低温度出现在凌晨2时,最低温度为零下.
(Ⅰ)请推理荆门地区该时段的温度函数
的表达式;
(Ⅱ)29日上午9时某高中将举行期末考试,如果温度低于,教室就要开空调,请问届时学校后勤应该送电吗?
(1) ; (2)应该开空调.

试题分析:(1)(3分)
(5分)(6分);
(2)(8分)
,(11分)    所以应该开空调. (12分)
点评:在实际应用问题中,常常引入辅助角参数沟通变量之间的联系,这时,常可利用辅助角的正、余弦的有界性求出最小值。构造辅助角模型,利用正、余弦函数的有界性求出的最值,一定要验证取最值时的角是否存在且在给定的区间内,以防上当受骗.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知是定义在上的奇函数,且当时,
(Ⅰ)求的解析式;
(Ⅱ)直接写出的单调区间(不需给出演算步骤);
(Ⅲ)求不等式解集.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,在区间为增函数的是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

复数在映射f下的象为,则的原象为
A.2B.2-iC.2+2iD.-1+3i

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若A=,B=R,映射,对应法则为,对于实数,在集合A中不存在原象,则实数的取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)
如图,开发商欲对边长为的正方形地段进行市场开发,拟在该地段的一角建设一个景观,需要建一条道路(点分别在上),根据规划要求的周长为

(1)设,求证:
(2)欲使的面积最小,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数在(0,+∞)上单调递增,则f (a+1)与f (2)的大小关系是
A.f (a+1)= f (2)B.f (a+1)> f (2)
C.f (a+1)< f (2)D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于函数,若存在,使成立,则称的不动点. 已知函数,若对任意实数b,函数恒有两个相异的不动点,则实数的取值范围是   (  )
A.(0,1)B.(1,+∞)C.[0,1)D.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的值域是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案