精英家教网 > 高中数学 > 题目详情

已知函数 f (x) = x3 -(l-3)x2 -(l +3)x + l -1(l > 0)在区间[n, m]上为减函数,记m的最大值为m0n的最小值为n0,且满足m0-n0 = 4.

(1)求m0n0的值以及函数f (x)的解析式;

(2)已知等差数列{xn}的首项.又过点A(0, f (0)),B(1, f (1))的直线方程为y=g(x).试问:在数列{xn}中,哪些项满足f (xn)>g(xn)?

(3)若对任意x1x2∈ [a, m0](x1x2),都有成立,求a的最小值.

(1) m0 = 3,n0 = -1

(2)当n< 91或n > 191(n∈N*)时,满足题意.

(3)a的最小值为1.


解析:

(1)

由题意可知m0n0为方程f ′(x) = 0的两根.

其中m0 > n0

m0-n0 = 4,∴= 4,即= 0.

解得l = 6或l = -3,∵l > 0,∴l = 6, ∴f (x) = x3 - 3x2 - 9x + 5.

同时可解得:m0 = 3,n0 = -1

(2)由(Ⅰ)得A(0, 5),B(1, -6),∴g(x) = -11x + 5.

===

>0,∴

由题意,得

,则,∴n < 91.

,则,∴n > 191.

∴当n< 91或n > 191(n∈N*)时,满足题意.

(3)由(1)有l = 6, 易解得m0 = 3,n0 = -1.

=-

=+=. 

由题意,< 0恒成立,∴恒成立.

m0 = 3,∴ax1<x2≤3.∴

要使恒成立,只要2a≥2,即a≥1.∴a的最小值为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案