【题目】如图,已知四棱锥
中,底面
为直角梯形,
,
,
,
平面
,
,
分别是
,
的中点.
(1)证明:
;
(2)若
,求点
到平面
的距离.
![]()
【答案】(1)证明见详解;(2)![]()
【解析】
(1)先证明直线AE垂直于平面PAD,再由线面垂直证明线线垂直;
(2)根据等体积法,将问题转化为求解三棱锥
的体积即可.
(1)因为E为BC中点,且
,故AD=EC,又AD//EC,
故四边形AECD为平行四边形,故AE//CD,又CD
,
故AE
AD;
因为PA
底面ABCD,AE
平面ABCD,故PA
AE
又AD
平面PAD,PA
平面PAD,
故AE
平面PAD,又PD
平面PAD
故AE
PD.即证.
(2)在
中,AF为斜边上的中线,又因为PA=AB=2,且PA
AB
故可得:AF=
;
在
中,因为AB=2,BE=1,且AE
BE,故可得AE=![]()
故可得![]()
在
中,因为PA=2=AC,且PA
,故可得PC=![]()
在
中,因为EF分别为两边的中点,故EF=![]()
故由余弦定理可得
,则
.
故
.
![]()
又因为F为PB的中点,且PA
平面ABCD,
故F点到平面ABCD的距离为![]()
设点C到平面AEF的距离为
,
根据
,即![]()
解得
.
故点
到平面
的距离为
.
科目:高中数学 来源: 题型:
【题目】某民航部门统计的2019年春运期间12个城市售出的往返机票的平均价格以及相比上年同期变化幅度的数据统计图表如图所示,根据图表,下面叙述不正确的是( )
![]()
A. 同去年相比,深圳的变化幅度最小且厦门的平均价格有所上升
B. 天津的平均价格同去年相比涨幅最大且2019年北京的平均价格最高
C. 2019年平均价格从高到低居于前三位的城市为北京、深圳、广州
D. 同去年相比,平均价格的涨幅从高到低居于前三位的城市为天津、西安、南京
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆![]()
经过点
,离心率为
,过点
的直线
与椭圆
交于不同的两点
,
(1)求椭圆
的方程;
(2)求
的取值范围;
(3)设直线
和
的斜率分别为
和
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a=2,c=3,又知bsinA=acos(B
).
(Ⅰ)求角B的大小、b边的长:
(Ⅱ)求sin(2A﹣B)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过多年的努力,炎陵黄桃在国内乃至国际上逐渐打开了销路,成为炎陵部分农民脱贫致富的好产品.为了更好地销售,现从某村的黄桃树上随机摘下了100个黄桃进行测重,其质量分布在区间
内(单位:克),统计质量的数据作出其频率分布直方图如图所示:
![]()
(1)按分层抽样的方法从质量落在
,
的黄桃中随机抽取5个,再从这5个黄桃中随机抽2个,求这2个黄桃质量至少有一个不小于400克的概率;
(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的黄桃树上大约还有100000个黄桃待出售,某电商提出两种收购方案:
A.所有黄桃均以20元/千克收购;
B.低于350克的黄桃以5元/个收购,高于或等于350克的以9元/个收购.
请你通过计算为该村选择收益最好的方案.
(参考数据:
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某水果种植基地引进一种新水果品种,经研究发现该水果每株的产量
(单位:
)和与它“相近”的株数
具有线性相关关系(两株作物“相近”是指它们的直线距离不超过
),并分别记录了相近株数为0,1,2,3,4时每株产量的相关数据如下:
| 0 | 1 | 2 | 3 | 4 |
| 15 | 12 | 11 | 9 | 8 |
(1)求出该种水果每株的产量
关于它“相近”株数
的回归方程;
(2)有一种植户准备种植该种水果500株,且每株与它“相近”的株数都为
,计划收获后能全部售出,价格为10元
,如果收入(收入=产量×价格)不低于25000元,则
的最大值是多少?
(3)该种植基地在如图所示的直角梯形地块的每个交叉点(直线的交点)处都种了一株该种水果,其中每个小正方形的边长和直角三角形的直角边长都为
,已知该梯形地块周边无其他树木影响,若从所种的该水果中随机选取一株,试根据(1)中的回归方程,预测它的产量的分布列与数学期望.
附:回归方程
中斜率和截距的最小二乘法估计公式分别为:
,
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,直角梯形
中,
,
,
,四边形
为矩形,
.
![]()
(1)求证:平面
平面
;
(2)在线段
上是否存在点
,使得直线
与平面
所成角的正弦值为
,若存在,求出线段
的长,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com