【题目】已知函数f(x)=ax3+bx+c在点x=2处取得极值c﹣16.
(1)求a,b的值;
(2)若f(x)有极大值28,求f(x)在[﹣3,3]上的最小值.
【答案】
(1)解:由题f(x)=ax3+bx+c,可得f′(x)=3ax2+b,又函数在点x=2处取得极值c﹣16
∴ ,即 ,化简得
解得a=1,b=﹣12
(2)解:由(1)知f(x)=x3﹣12x+c,f′(x)=3x2﹣12=3(x+2)(x﹣2)
令f′(x)=3x2﹣12=3(x+2)(x﹣2)=0,解得x1=﹣2,x2=2
当x∈(﹣∞,﹣2)时,f′(x)>0,故f(x)在∈(﹣∞,﹣2)上为增函数;当x∈(﹣2,2)时,f′(x)<0,故f(x)在(﹣2,2)上为减函数;
当x∈(2,+∞)时,f′(x)>0,故f(x)在(2,+∞)上为增函数;
由此可知f(x)在x1=﹣2处取得极大值f(﹣2)=16+c,f(x)在x2=2处取得极小值f(2)=c﹣16,
由题设条件知16+c=28得,c=12
此时f(﹣3)=9+c=21,f(3)=﹣9+c=3,f(2)=﹣16+c=﹣4
因此f(x)在[﹣3,3]上的最小值f(2)=﹣4
【解析】(1)由题设f(x)=ax3+bx+c,可得f′(x)=3ax2+b,又函数在点x=2处取得极值c﹣16,可得 解此方程组即可得出a,b的值;(2)结合(1)判断出f(x)有极大值,利用f(x)有极大值28建立方程求出参数c的值,进而可求出函数f(x)在[﹣3,3]上的极小值与两个端点的函数值,比较这此值得出f(x)在[﹣3,3]上的最小值即可.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的普通方程为,曲线的参数方程为为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程;
(2)求曲线与焦点的极坐标,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣|x2﹣ax﹣2|,a为实数.
(1)当a=1时,求函数f(x)在[0,3]上的最小值和最大值;
(2)若函数f(x)在(﹣∞,﹣1)和(2,+∞)上单调递增,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省数学学业水平考试成绩分为A、B、C、D四个等级,在学业水平成绩公布后,从该省某地区考生中随机抽取60名考生,统计他们的数学成绩,部分数据如下:
等级 | A | B | C | D |
频数 | 24 | 12 | ||
频率 | 0.1 |
(1)补充完成上述表格中的数据;
(2)现按上述四个等级,用分层抽样的方法从这60名考生中抽取10名,在这10名考生中,从成绩A等和B等的所有考生中随机抽取2名,求至少有一名成绩为A等的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线C: (a>0,b>0)过点A(1,0),且离心率为
(1)求双曲线C的方程;
(2)已知直线x﹣y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若函数在其定义域内是单调函数,求实数的取值范围;
(2)若,令(为自然对数的底数),求证:存在,使.
请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四组函数中,f(x)与g(x)是同一函数的一组是( )
A.f(x)=|x|,g(x)=
B.f(x)=x,g(x)=( )2
C.f(x)= ,g(x)=x+1
D.f(x)=1,g(x)=x0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4x+a2x+3,a∈R.
(1)当a=﹣4时,且x∈[0,2],求函数f(x)的值域;
(2)若关于x的方程f(x)=0在(0,+∞)上有两个不同实根,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com