精英家教网 > 高中数学 > 题目详情
9.设F是抛物线C:y2=4x的焦点,过F的直线l交抛物线C于A,B两点,当|AB|=6时,以AB为直径的圆与y轴相交所得弦长是2$\sqrt{5}$.

分析 求得抛物线的焦点F,设出直线AB的方程,代入抛物线方程,运用韦达定理和中点坐标公式,再由弦长公式求得斜率,再由圆的弦长公式,可得所求值.

解答 解:y2=4x的焦点F(1,0),设直线AB:y=k(x-1),
代入抛物线的方程可得,k2x2-(2k2+4)x+k2=0,
设A(x1,y1),B(x2,y2),
即有x1+x2=2+$\frac{4}{{k}^{2}}$,即有中点的横坐标为1+$\frac{2}{{k}^{2}}$,
由抛物线的弦长公式可得,|AB|=x1+x2+p=1+$\frac{2}{{k}^{2}}$+1=6,
解得k=$±\sqrt{2}$,
即有r=3,d=1+$\frac{2}{{k}^{2}}$=2,
再由圆的弦长公式可得,
与y轴相交所得弦长是2$\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{{3}^{2}-{2}^{2}}$=2$\sqrt{5}$.
故答案为:2$\sqrt{5}$.

点评 本题考查抛物线的方程和性质,主要是弦长公式的运用,同时考查圆的弦长公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列函数中,既是偶函数又在(0,+∞)上单调递减的函数是(  )
A.y=x3B.y=|x|C.y=-x2+1D.y=x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.过点P(2,3)的直线与圆(x-1)2+y2=5相切,且与直线ax+y+1=0垂直,则a=2或-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=-3x+7,g(x)=lg(ax2-4x+a),若?x1∈R,?x2∈R,使f(x1)=g(x2),则实数a的取值范围为[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|2≤x≤8},B={x|1<x<6},U=R.
求A∪B,A∩B,(∁UA)∩B,∁U(A∪B).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知定义在R上的函数f(x)、g(x)满足$\frac{f(x)}{g(x)}={a^x}$,且f′(x)g(x)>f(x)g′(x),$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{10}{3}$,若cn=$\frac{f(n)}{g(n)}$,则数列{ncn}的前n项和Sn=$\frac{3+(2n-1)•{3}^{n+1}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设f(x)=$\frac{1+cos2x+sin2x}{\sqrt{2}sin(\frac{π}{2}+x)}$+asin(x+$\frac{π}{4}$)的最大值为3,则常数a=(  )
A.1B.a=1或a=-5C.a=-1或a=1D.a=±$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于直线x=1对称,当x∈[-1,0]时,f(x)=-x,则f(2015)+f(2016)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-4x.
(1)求x∈[0,5]时,求f(x)的值域;
(2)求函数f(x)的解析式.

查看答案和解析>>

同步练习册答案