【题目】设常数
.在平面直角坐标系
中,已知点
,直线
:
,曲线
:
.
与
轴交于点
、与
交于点
.
、
分别是曲线
与线段
上的动点.
![]()
(1)用
表示点
到点
距离;
(2)设
,
,线段
的中点在直线
,求
的面积;
(3)设
,是否存在以
、
为邻边的矩形
,使得点
在
上?若存在,求点
的坐标;若不存在,说明理由.
【答案】(1)
;(2)
;(3)见解析.
【解析】
(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;
方法二:根据抛物线的定义,即可求得|BF|;
(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;
(3)设P及E点坐标,根据直线kPFkFQ=﹣1,求得直线QF的方程,求得Q点坐标,根据
+
=
,求得E点坐标,则(
)2=8(
+6),即可求得P点坐标.
(1)方法一:由题意可知:设
,
则
,
∴
;
方法二:由题意可知:设
,
由抛物线的性质可知:
,∴
;
(2)
,
,
,则
,
∴
,∴
,设
的中点
,
,
,则直线
方程:
,
联立,整理得:
,
解得:
,
(舍去),
∴
的面积
;
(3)存在,设
,
,则
,
,
直线
方程为
,∴
,
,
根据
,则
,
∴
,解得:
,
∴存在以
、
为邻边的矩形
,使得点
在
上,且
.
科目:高中数学 来源: 题型:
【题目】已知过点
的直线
与直线
垂直.
(1) 若
,且点
在函数
的图象上,求直线
的一般式方程;
(2)若点
在直线
上,判断直线
是否经过定点?若是,求出该定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近日,某地普降暴雨,当地一大型提坝发生了渗水现象,当发现时已有
的坝面渗水,经测算,坝而每平方米发生渗水现象的直接经济损失约为
元,且渗水面积以每天
的速度扩散.当地有关部门在发现的同时立即组织人员抢修渗水坝面,假定每位抢修人员平均每天可抢修渗水面积
,该部门需支出服装补贴费为每人
元,劳务费及耗材费为每人每天
元.若安排
名人员参与抢修,需要
天完成抢修工作.
写出
关于
的函数关系式;
应安排多少名人员参与抢修,才能使总损失最小.(总损失=因渗水造成的直接损失+部门的各项支出费用)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年,随着中国第一款5G手机投入市场,5G技术已经进入高速发展阶段.已知某5G手机生产厂家通过数据分析,得到如下规律:每生产手机
万台,其总成本为
,其中固定成本为800万元,并且每生产1万台的生产成本为1000万元(总成本=固定成本+生产成本),销售收入
万元满足![]()
(1)将利润
表示为产量
万台的函数;
(2)当产量
为何值时,公司所获利润最大?最大利润为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】命题甲:“一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角相等或互补.”命题乙:“底面为正三角形,侧面为等腰三角形的三棱锥是正三棱锥.”命题丙:“过圆锥的两条母线的截面,以轴截面的面积最大.”其中真命题的个数是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com