精英家教网 > 高中数学 > 题目详情
已知定义在正实数集上的连续函数f(x)=
1
1-x
+
2
x2-1
(0<x<1)
x+a   (x≥1)
,则实数a的值为
 
分析:由函数极限定义可知:x→1时函数的极限等于f(1),求出函数的极限列出关于a的方程,即可求出a.
解答:解:因为f(x)是连续函数,所以
lim
x→1
(
1
1-x
+
2
x2-1
)
=f(1)=1+a,
lim
x→1
(
1
1-x
+
2
x2-1
)
=
lim
x→1
(
1+x
(1-x)(1+x)
+
2
x2-1
)
=
lim
x→1
 (-
1
x+1
)
=-
1
2

所以1+a=-
1
2
,解得a=-
3
2

故答案为:-
3
2
点评:此题要求学生掌握函数连续的定义,会进行极限的运算.解题时要正确理解函数的连续性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在正实数集上的函数f(x)=x2+4ax+1,g(x)=6a2lnx+2b+1,其中a>0.
(Ⅰ)设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同,用a表示b,并求b的最大值;
(Ⅱ)设h(x)=f(x)+g(x),证明:若a≥
3
-1
,则对任意x1,x2∈(0,+∞),x1≠x2
h(x2)-h(x1)
x2-x1
>8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在正实数集上的函数f(x)=
12
x2+2ax
,g(x)=3a2lnx+b,其中a>0,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同.
(Ⅰ)用a表示b,并求b的最大值;
(Ⅱ)求证:f(x)≥g(x)(x>0).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在正实数集上的函数f(x)满足①若x>1,则f(x)<0;②f(
12
)
=1;③对定义域内的任意实数x,y,都有:f(xy)=f(x)+f(y),则不等式f(x)+f(5-x)≥-2的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•河西区二模)已知定义在正实数集上的函数f(x)=
3x22
+ax,g(x)=4a2lnx+b,其中a>0,设两曲线x=f(x)与f=g(x)有公共点,且在公共点处的切线相同.
(I)若a=1,求两曲线y=f(x)与y=g(x)在公共点处的切线方程;
(Ⅱ)用a表示b,并求b的最大值.

查看答案和解析>>

同步练习册答案