【题目】已知△ABC的三边长成等差数列,公差为2,且最大角的正弦值为 ,则这个三角形的周长是( )
A.9
B.12
C.15
D.18
【答案】C
【解析】解:不妨设三角形的三边分别为a、b、c,且a>b>c>0, ∵由于公差为d=2,三个角分别为、A、B、C,
∴a﹣b=b﹣c=2,即:a=c+4,b=c+2,
∵sinA= ,
∴A=60°或120°.
∵若A=60°,由于三条边不相等,则必有角大于A,矛盾,
∴A=120°.
∴cosA= = = =﹣ .
∴c=3,
∴b=c+2=5,a=c+4=7.
∴这个三角形的周长=3+5+7=15.
故选:C.
设三角形的三边分别为a、b、c,且a>b>c>0,由于公差为d=2,三个角分别为、A、B、C,则a﹣b=b﹣c=2,a=c+4,b=c+2,因为sinA= ,所以A=60°或120°.若A=60°,因为三条边不相等,则必有角大于A,矛盾,故A=120°.由余弦定理能求出三边长,从而得到这个三角形的周长.
科目:高中数学 来源: 题型:
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
设农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程=bx+a;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(注:==,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】命题p:关于x的方程x2+ax+2=0无实根,命题q:函数f(x)=logax在(0,+∞)上单调递增,若“p∧q”为假命题,“p∨q”真命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点, 轴的非负半轴为极轴建立极坐标系,已知直线的参数方程为 (为参数),曲线的极坐标方程为,直线与曲线交于两点,与轴交于点.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选做题】
A.[选修4-1:几何证明选讲]
如图,四边形是圆的内接四边形, , 的延长线交的延长线于点.
求证: 平分.
B.[选修4-2:矩阵与变换]
已知变换: ,试写出变换对应的矩阵,并求出其逆矩阵.
C.[选修4-4:坐标系与参数方程]
在平面直角坐标系中,已知直线的参数方程为(为参数),曲线的参数方程为(为参数).若直线与曲线相交于两点,求线段的长.
D.[选修4-5:不等式选讲]
设均为正数,且,求证 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某建材公司在,两地各有一家工厂,它们生产的建材由公司直接运往地.由于土路交通运输不便,为了减少运费,该公司预备投资修建一条从地或地直达地的公路;若选择从某地修建公路,则另外一地生产的建材可先运输至该地再运至以节约费用.已知,之间为土路,土路运费为每吨千米20元,公路的运费减半,,,三地距离如图所示.为了制定修路计划,公司统计了最近10天两个工厂每天的建材产量,得到下面的柱形图,以两个工厂在最近10天日产量的频率代替日产量的概率.
(1)求“,两地工厂某天的总日产量为20吨”的概率;
(2)以修路后每天总的运费的期望为依据,判断从,哪一地修路更加划算.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com