精英家教网 > 高中数学 > 题目详情
10、关于直线m,n与平面α,β,有以下四个命题:
①若m∥a,n∥β且a∥β,则m∥n;②若m⊥a,n⊥β且a⊥β,则m⊥n;
③若m⊥a,n∥β且a∥β,则m⊥n;④若m∥a,n⊥β且a⊥β,则m∥n.
其中真命题的序号是
②④
分析:对于立体几何中的线线、线面、面面关系的判定可列举反例从而说明不正确即可.
解答:解:
①AD∥BC,AB∥面A1C1,BC∥面A1C1,但AD与AB相交,故不正确;
②n⊥β,a⊥β?n∥a,再由m⊥a,n∥a?m⊥n,故正确;
③AB⊥BC,AC∥面A1C1,且BC∥面A1C1,但AB与AC不垂直,故不正确;
④n⊥β,a⊥β?n∥a,再由m∥a,n∥a?m∥n,故正确.
故选②④.
点评:本题主要考查了空间中直线与直线之间的位置关系,以及空间中直线与平面之间的位置关系和平面与平面之间的位置关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、关于直线m,n与平面α,β,有以下四个命题:
①若m∥α,n∥β且α∥β,则m∥n;
②若m⊥α,n⊥β且α⊥β,则m⊥n;
③若m⊥α,n∥β且α∥β,则m⊥n;
④若m∥α,n⊥β且α⊥β,则m∥n;
其中真命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

关于直线m、n与平面α、β,有以下四个命题:
①若m∥n,m?α,α∩β=n,则m∥n;
②若m⊥α,n∥β且α∥β,则m⊥n;
③若m⊥α,n∥β且α∥β,则m⊥n;
④若m⊥α,n⊥β且α⊥β,则m⊥n.
其中真命题有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

关于直线m,n与平面α,β,有以下四个命题:
(1)若m∥α,n∥β,且α∥β,则m∥n;
(2)若m⊥α,n⊥β,且α⊥β,则m⊥n;
(3)若m⊥α,n∥β,且α∥β,则m⊥n;
(4)若m∥α,n⊥β,且α⊥β,则m∥n,
其中真命题的序号是
(2)(3)
(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

关于直线m,n与平面α,β,γ有以下三个命题
(1)若m∥α,n∥β,α∥β,则m∥n;
(2)若α∩β=m,α⊥γ,β⊥γ,则m⊥γ;
(3)若m⊥α,n⊥β且α⊥β,则m⊥n,
其中真命题有(  )

查看答案和解析>>

同步练习册答案