精英家教网 > 高中数学 > 题目详情
(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分.)
A.设函数f(x)=|2x+1|-|x-4|.则不等式f(x)>2的解集为   
B.(坐标系与参数方程选做题)曲线C:(α为参数),若以点O(0,0)为极点,x正半轴为极轴建立极坐标系,则该曲线的极坐标方程是   

C.(几何证明选讲选做题) 如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,弧AE=弧AC,DE交AB于F,且AB=2BP=4,则PF=   
【答案】分析:A,通过对x分类讨论去掉绝对值符号即可求得分段函数f(x)的表达式,从而可|求得不等式f(x)>2的解集;
B,根据题意可以点O(0,0)为极点,x正半轴为极轴建立极坐标系作出图形,从而得到该曲线的极坐标方程;
C:由于点F在直径AB上,可构造相似形,利用割线定理转化求解.
解答:解:对于A,∵f(x)=|2x+1|-|x-4|=
∴当x<-时,f(x)>2?-x-5>2,
∴x<-7;
当-≤x≤4时,f(x)>2?3x-3>2,
<x≤4;
当x>4时,f(x)>2?x+5>2,
∴x>4;
综上所述,不等式f(x)>2的解集为{x|x<-7或x>};
对于B,由参数方程得其普通方程为:(x+2)2+y2=4,
∴以点O(0,0)为极点,x正半轴为极轴建立极坐标系,

则该曲线的极坐标方程是ρ=4cos(π-θ)=-4cosθ;
对于C,连接OC,

∵∠AOC的度数=弧AC的度数,∠EDC的度数=弧EC的度数=弧AC的度数
∴∠AOC=∠EDC,
∴∠POC=∠PDF,
∴△POC∽△PDF
=
即PF===2×=3.
故答案为:A,{x|x<-7或x>};B,ρ=-4cosθ;C,3.
点评:本题A考查绝对值不等式的解法,通过对x分类讨论去掉绝对值符号是关键;B考查简单曲线的极坐标方程,将参数方程转化为极坐标方程是关键,C考查几何证明,构造解决问题的相似三角形是关键,利用切割线定理转化是难点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式|x+1|≥|x+2|的解集为
 

B.(几何证明选做题)如图所示,过⊙O外一点P作一条直线与⊙O交于A,B两点,
已知PA=2,点P到⊙O的切线长PT=4,则弦AB的长为
 

C.(坐标系与参数方程选做题)若直线3x+4y+m=0与圆
x=1+cosθ
y=-2+sinθ
(θ为参数)没有公共点,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(三选一,考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(1)(坐标系与参数方程选做题)在直角坐标系中圆C的参数方程为
x=1+2cosθ
y=
3
+2sinθ
(θ为参数),则圆C的普通方程为
(x-1)2+(y-
3
)2=4
(x-1)2+(y-
3
)2=4

(2)(不等式选讲选做题)设函数f(x)=|2x+1|-|x-4|,则不等式f(x)>2的解集为
{x|x<-7或x>
5
3
}
{x|x<-7或x>
5
3
}

(3)(几何证明选讲选做题) 如图所示,等腰三角形ABC的底边AC长为6,其外接圆的半径长为5,则三角形ABC的面积是
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
(A)(几何证明选做题)如图,CD是圆O的切线,切点为C,点B在圆O上,BC=2,∠BCD=30°,则圆O的面积为

(B)(极坐标系与参数方程选做题)极坐标方程ρ=2sinθ+4cosθ表示的曲线截θ=
π
4
(ρ∈R)
所得的弦长为
3
2
3
2

(C)(不等式选做题)  不等式|2x-1|<|x|+1解集是
(0,2)
(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交AC于点E,交⊙O于点D.若PA=PE,∠ABC=60°,PD=1,PB=9,则EC=
4
4

B. P为曲线C1
x=1+cosθ
y=sinθ
,(θ为参数)上一点,则它到直线C2
x=1+2t
y=2
(t为参数)距离的最小值为
1
1

C.不等式|x2-3x-4|>x+1的解集为
{x|x>5或x<-1或-1<x<3}
{x|x>5或x<-1或-1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列二题中任选一题作答,如果多做,则按所做的第一题评阅记分.)
(A)(选修4-4坐标系与参数方程)曲线
x=cosα
y=a+sinα
(α为参数)与曲线ρ2-2ρcosθ=0的交点个数为
 
个.
(B)(选修4-5不等式选讲)若不等式|x+1|+|x-3| ≥a+
4
a
对任意的实数x恒成立,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案