精英家教网 > 高中数学 > 题目详情
11.在直角坐标系中,坐标原点到直线l:3x+4y-10=0的距离是(  )
A.10B.4C.3D.2

分析 利用点到直线的距离公式求解.

解答 解:坐标原点到直线l:3x+4y-10=0的距离:
d=$\frac{|3×0+4×0-10|}{\sqrt{9+16}}$=2.
故选:D.

点评 本题考查点到直线的距离的求法,是基础题,解题时要认真审题,注意点到直线的距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|2x-a|+|x-1|.
(I)解关于a的不等式f(1)≥2;
(II)若关于x的不等式f(x)≥2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x|m-x|,且f(4)=0.
(1)求实数m的值;
(2)出函数f(x)的单调区间;
(3)若方程f(x)=a只有一个实根,确定a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.二项式($\frac{1}{x}$-x$\sqrt{x}$)n展开式中含有x2项,则n可能的取值是(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设a∈R,a2-1+(a+1)i是纯虚数,其中i是虚数单位,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知实数x,y满足$\left\{\begin{array}{l}1≤x≤2\\ y≤2\\ 2x-y≤2\end{array}\right.$,则z=2x+y的最大值为(  )
A.0B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)的定义域为R,它的导函数y=f′(x)的部分图象如图所示,则下面结论正确的是(  )
A.在(1,2)上函数f(x)为增函数
B.在(3,4)上函数f(x)为减函数
C.在(1,3)上函数f(x)有极大值
D.x=3是函数f(x)在区间[1,5]上的极小值点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设p:函数f(x)=lg(ax2-x+$\frac{a}{36}$)的定义域为R; q:2x-4x$<2a-\frac{3}{4}$对一切实数x恒成立.如果命题“p且q“为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=2lnx-ax在点(1,f(1))处的切线与直线x+6y=0垂直,则实数a=-4.

查看答案和解析>>

同步练习册答案