精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x
+a,g(x)=x+2a
x
(a>0)

(1)当a=1时,求|
ag(x)+3f(x)
f(x)
|
的最小值;  
(2)|
ag(x)+3f(x)
f(x)
|>5
对x∈[1,4]恒成立,求实数a的取值范围.
分析:(1)利用换元法,可将求|
ag(x)+3f(x)
f(x)
|
 的最小值转化为利用基本不等式可求最小值;
(2)由x∈[1,4]得t∈[1+a,2+a],由|
ag(x)+3f(x)
f(x)
|>5
整理可得at2-2t-a3>0①或at2+8t-a3<0②.构造函数φ(t)=at2-2t-a3,因为△=4+4a4>0,结合该函数的图象可求实数a的取值范围.
解答:解:令f(x)=
x
+a=t
,则g(x)=t2-a2|
ag(x)+3f(x)
f(x)
|=|
at2+3t-a3
t
|

(1)当a=1时,t≥1,故t-
1
t
+3=
(t-1)(t+1)
t
+3≥3
,因此|
ag(x)+3f(x)
f(x)
|=|
t2+3t-1
t
|=|t-
1
t
+3|≥3
,当且仅当t=1即x=0时取等号.
所以|
ag(x)+3f(x)
f(x)
|
的最小值是3;
(2)由x∈[1,4]得t∈[1+a,2+a],由|
ag(x)+3f(x)
f(x)
|>5
整理可得at2-2t-a3>0①或at2+8t-a3<0②.因此①式或②式对于任意的t∈[1+a,2+a]恒成立.显然at2+8t-a3=a(t2-a2)+8t>0,故②式不成立.
令φ(t)=at2-2t-a3,因为△=4+4a4>0,
结合该函数的图象可得
φ(1+a)>0
1
a
<1+a
φ(2+a)>0
1
a
>2+a
?( I)
2a2-a-2>0
a2+a-1>0
或( II)
2a2+a-2>0
a2+2a-1<0

结合a>0可知不等式组( I)的解为a>
17
+1
4
,不等式组( II)无解.所以a>
17
+1
4
点评:本题以函数为载体,考查基本不等式的运用,考查学生分析解决问题的能力,关键是换元转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案