分析 (1)求出函数的导数,得到f′(1)=1=$\frac{1}{2}$a,求出a的值即可;根据g(1)=0,求出b的值,从而求出g(x)的表达式;
(2)求出φ′(x),问题转化为则2m-2≤x+$\frac{1}{x}$,x∈[1,+∞),求出m的范围即可.
解答 解:(1)由已知得f′(x)=$\frac{1}{x}$,∴f′(1)=1=$\frac{1}{2}$a,a=2.
又∵g(1)=0=$\frac{1}{2}$a+b,∴b=-1,∴g(x)=x-1.
(2)φ(x)=$\frac{m(x-1?}{x+1}$-f(x)=$\frac{m(x-1?}{x+1}$-lnx在[1,+∞)上是减函数,
∴φ′(x)=$\frac{-x2+?2m-2?x-1}{x(x+1?2)$≤0在[1,+∞)上恒成立.
即x2-(2m-2)x+1≥0在[1,+∞)上恒成立,则2m-2≤x+$\frac{1}{x}$,x∈[1,+∞),
∵x+$\frac{1}{x}$∈[2,+∞),∴2m-2≤2,m≤2.
点评 本题考查了切线方程问题,考查函数的单调性,导数的应用,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com