分析 根据$\overrightarrow{a}⊥\overrightarrow{b}$便可得出$\overrightarrow{a}•\overrightarrow{b}=0$,进而得出sin2θ=1,根据θ的范围可求出2θ的范围,从而可求出2θ,进而求出θ.
解答 解:∵$\overrightarrow{a}⊥\overrightarrow{b}$;
∴$\overrightarrow{a}•\overrightarrow{b}=2sinθcosθ-1=0$;
∴sin2θ=1;
∵θ∈(0,π);
∴2θ∈(0,2π);
∴$2θ=\frac{π}{2}$;
∴$θ=\frac{π}{4}$.
故答案为:$\frac{π}{4}$.
点评 考查向量垂直的充要条件,向量数量积的坐标运算,二倍角的正弦公式,以及已知三角函数值求角.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com