精英家教网 > 高中数学 > 题目详情
10.如图所示,在长方体ABCD-A1B1C1D1中,AB=BC=2,DD1=1.
(1)求证:B1D1⊥平面C1A1AC;
(2)以D1为坐标原点建立空间直角坐标系,点O(0,1,0)是圆的圆心,且圆的半径为1.
(I)过点C1的直线与圆相切,切点为P,且P的横坐标x为正,与A1D1交与点N,求C1N长度;
(Ⅱ)在(I)的条件下,圆上有一动点Q,求$\overrightarrow{CQ}$•$\overrightarrow{CP}$的取值范围.

分析 (1)证明B1D1⊥A1C1,B1D1⊥CC1,即可证明B1D1⊥平面C1A1AC;
(2)(I)由题意sin∠OC1P=$\frac{1}{3}$,即可求C1N长度;
(Ⅱ)由(I)可知C1P=2$\sqrt{2}$,sin2∠OC1P=2×$\frac{1}{3}×\frac{2\sqrt{2}}{3}$=$\frac{4\sqrt{2}}{9}$,即可求$\overrightarrow{CQ}$•$\overrightarrow{CP}$的取值范围.

解答 (1)证明:在长方体ABCD-A1B1C1D1中,AB=BC,
∴B1D1⊥A1C1,B1D1⊥CC1
∵A1C1∩CC1=C1
∴B1D1⊥平面C1A1AC;
(2)(I)解:由题意sin∠OC1P=$\frac{1}{3}$,
∴cos∠OC1P=$\frac{2\sqrt{2}}{3}$,
∴C1N=$\frac{2}{\frac{2\sqrt{2}}{3}}$=$\frac{3}{2}\sqrt{2}$;
(Ⅱ)由(I)可知C1P=2$\sqrt{2}$,sin2∠OC1P=2×$\frac{1}{3}×\frac{2\sqrt{2}}{3}$=$\frac{4\sqrt{2}}{9}$,
∴cos2∠OC1P=$\frac{7}{9}$,
∴$\overrightarrow{CQ}$•$\overrightarrow{CP}$的最小值为$\frac{56}{9}$,最大值为8,
∴$\overrightarrow{CQ}$•$\overrightarrow{CP}$的取值范围是[$\frac{56}{9}$,8].

点评 本题考查线面垂直,考查平面向量知识的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知f(x)=e2x,g(x)=lnx+$\frac{1}{2}$,对?a∈R,?b∈(0,+∞),使得f(a)=g(b),则b-a的最小值为1+$\frac{1}{2}$ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.曲线f(x)=ex+2x在点(0,f(0))处的切线与坐标轴围成的三角形的面积为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow{b}$=(2cosθ,-1)且θ∈(0,π),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则θ=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.点A(a,6)到直线3x-4y-6=0的距离等于3,求a的值5或15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在某次综合素质测试中,共设有40个考室,每个考室30名考生.在考试结束后,为调查其测试前的培训辅导情况与测试成绩的相关性,抽取每个考室中座位号为05的考生,得到40名考生,统计他们的成绩,得到如图所示的频率分布直方图:
(1)在这个调查采样中,用到的是什么抽样方法?
(2)求分数在70~85之间的频率是多少?
(3)求出这40名考生成绩的众数、中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点A(0,-2),B(0,4),动点P(x,y)满足$\overrightarrow{PA}$•$\overrightarrow{PB}$=y2-8.
(1)求动点P的轨迹方程;
(2)设(1)中所求轨迹与直线y=x+2交于C,D两点,设C( x1,y1),D( x2,y2),计算 x1 x2,y1 y2的值;
(3)求证:OC⊥OD(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若动直线x=a与函数f(x)=sinx和g(x)=2cos2x-1的图象分别交于M,N两点,则|MN|的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在底面为菱形的四棱锥P-ABCD中,PA⊥平面ABCD,E为PD的中点,AB=2,∠ABC=$\frac{π}{3}$.
(1)求证:PB∥平面AEC;
(2)若三棱锥P-AEC的体积为1,求二面角A-PC-B的余弦值.

查看答案和解析>>

同步练习册答案