精英家教网 > 高中数学 > 题目详情
12.给定函数①$y={x^{\frac{1}{2}}}$,②$y={log_{\frac{1}{2}}}({x+1})$,③y=|x+1|,④y=-2x+1,其中在区间(0,1)上单调递减的函数序号是(  )
A.①②B.②③C.②④D.③④

分析 根据基本初等函数的单调性,对题目中函数的单调性进行判断即可.

解答 解:对于①,函数$y={x^{\frac{1}{2}}}$在[0,+∞)上是单调增函数,∴不满足题意;
对于②,函数$y={log_{\frac{1}{2}}}({x+1})$,在(-1,+∞)上是单调减函数,∴满足题意;
对于③,函数y=|x+1|在[-1,+∞)上是单调增函数,∴不满足题意;
对于④,函数y=-2x+1在(-∞,+∞)上是单调减函数,∴满足题意;
综上,满足在区间(0,1)上单调递减的函数序号是②④.
故选:C.

点评 本题考查了基本初等函数单调性的应用问题,解题时应熟记常见的基本初等函数的图象与性质,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow{a}$=(1,k),$\overrightarrow{b}$=(-4,2),$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$垂直,那么k的值为(  )
A.-2B.1C.-3或1D.2或3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.阅读如图所示的程序框图. 若输入n=5,则输出k的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.一个多边形的周长等于158cm,所有各边的长成等差数列,最大边的长等于44cm,公差等于3cm,求多边形的边数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图展示了一个由区间(0,1)到实数集R的映射过程;区间(0,1)中的实数x对应数轴上的点M,如图①;将线段AB围成一个圆,使两端点A,B恰好重合,如图②;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),如图③.图③中直线AM与x轴交于点N(n,0),则x的象就是n,记作f(x)=n.

下列说法中正确的序号是①③⑤.(填上所有正确命题的序号)
①f(x)在定义域上单调递增;
②f(x)的图象关于y轴对称;
③$\frac{1}{2}$是f(x)的零点;
④$f({\frac{1}{3}})+f({\frac{2}{3}})=1$;
⑤f(x)>1的解集是$({\frac{3}{4},1})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某地举行了一场小型公车拍卖会,轿车拍卖成交了4辆,成交价格分别为3万元,x万元,7万元,9万元;货车拍卖成交了2辆,成交价格分别为7万元,8万元.总平均成交价格为7万元.
(I)求该场拍卖会成交价格的中位数;
(Ⅱ)某人拍得两辆车,求拍得轿车、货车各一辆且总成交价格不超过14万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已 知椭圆C1::$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)与双曲线C2有公共焦点F1、F2,(F1、F2分别为左、右焦点),它们在第一象限交于点M,离心率分别为e1和e2,线段MF1的垂直平分线过F2,则$\frac{1}{e_1}+\frac{e_2}{2}$的最小值为$2+\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=cos(2x-$\frac{π}{3}$),g(x)=sin2x,将函数f(x)的图象经过下列哪种可以与g(x) 的图象重合(  )
A.向左平移$\frac{π}{12}$个单位B.向左平移$\frac{π}{6}$个单位
C.向右平移$\frac{π}{12}$个单位D.向右平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.阅读下面程序框图,为使输出的数据为11,则①处应填的数字可以为(  )
A.4B.5C.6D.7

查看答案和解析>>

同步练习册答案