精英家教网 > 高中数学 > 题目详情
已知数列{an}是各项均为正数且公比不等于1的等比数列.对于函数y=f(x),若数列{lnf(an)}为等差数列,则称函数f(x)为“保比差数列函数”.现有定义在(0,+∞)上的如下函数:

②f(x)=x2
③f(x)=ex

则为“保比差数列函数”的所有序号为( )
A.①②
B.③④
C.①②④
D.②③④
【答案】分析:设数列{an}的公比为q(q≠1),利用保比差数列函数的定义,验证数列{lnf(an)}为等差数列,即可得到结论.
解答:解:设数列{an}的公比为q(q≠1)
①由题意,lnf(an)=ln,∴lnf(an+1)-lnf(an)=ln-ln=ln=-lnq是常数,∴数列{lnf(an)}为等差数列,满足题意;
②由题意,lnf(an)=ln,∴lnf(an+1)-lnf(an)=ln-ln=lnq2=2lnq是常数,∴数列{lnf(an)}为等差数列,满足题意;
③由题意,lnf(an)=ln,∴lnf(an+1)-lnf(an)=ln-ln=an+1-an不是常数,∴数列{lnf(an)}不为等差数列,不满足题意;
④由题意,lnf(an)=ln,∴lnf(an+1)-lnf(an)=ln-ln=lnq是常数,∴数列{lnf(an)}为等差数列,满足题意;
综上,为“保比差数列函数”的所有序号为①②④
故选C.
点评:本题考查新定义,考查对数的运算性质,考查等差数列的判定,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网若一个数列各项取倒数后按原来的顺序构成等差数列,则称这个数列为调和数列.已知数列{an}是调和数列,对于各项都是正数的数列{xn},满足xnan=xn+1an+1=xn+2an+2(n∈N*).
(Ⅰ)证明数列{xn}是等比数列;
(Ⅱ)把数列{xn}中所有项按如图所示的规律排成一个三角形数表,当x3=8,x7=128时,求第m行各数的和;
(Ⅲ)对于(Ⅱ)中的数列{xn},证明:
n
2
-
1
3
x1-1
x2-1
+
x2-1
x3-1
+…+
xn-1
xn+1-1
n
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•南汇区二模)已知数列{an}中,若2an=an-1+an+1(n∈N*,n≥2),则下列各不等式中一定成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若一个数列各项取倒数后按原来的顺序构成等差数列,则称这个数列为调和数列.已知数列{an}是调和数列,对于各项都是正数的数列{xn},满足数学公式(n∈N*).
(Ⅰ)证明数列{xn}是等比数列;
(Ⅱ)把数列{xn}中所有项按如图所示的规律排成一个三角形数表,当x3=8,x7=128时,求第m行各数的和;
(Ⅲ)对于(Ⅱ)中的数列{xn},证明:数学公式

查看答案和解析>>

科目:高中数学 来源:2010年北京市朝阳区高考数学一模试卷(理科)(解析版) 题型:解答题

若一个数列各项取倒数后按原来的顺序构成等差数列,则称这个数列为调和数列.已知数列{an}是调和数列,对于各项都是正数的数列{xn},满足(n∈N*).
(Ⅰ)证明数列{xn}是等比数列;
(Ⅱ)把数列{xn}中所有项按如图所示的规律排成一个三角形数表,当x3=8,x7=128时,求第m行各数的和;
(Ⅲ)对于(Ⅱ)中的数列{xn},证明:

查看答案和解析>>

科目:高中数学 来源:2010年北京市朝阳区高考数学一模试卷(文科)(解析版) 题型:解答题

若一个数列各项取倒数后按原来的顺序构成等差数列,则称这个数列为调和数列.已知数列{an}是调和数列,对于各项都是正数的数列{xn},满足(n∈N*).
(Ⅰ)证明数列{xn}是等比数列;
(Ⅱ)把数列{xn}中所有项按如图所示的规律排成一个三角形数表,当x3=8,x7=128时,求第m行各数的和;
(Ⅲ)对于(Ⅱ)中的数列{xn},证明:

查看答案和解析>>

同步练习册答案