(本小题满分12分)
如图,在三棱锥
中,
底面
,
,
是
的中点,且
,![]()
.
(1)求证:平面
平面
;
(2)当角
变化时,求直线
与平面
所成的角的取值范围.
![]()
(1)见解析(2)![]()
解法1:(1)
是等腰三角形,![]()
![]()
又
是
的中点
, ………..…………1分
又
底面
………………2分
于是
平面
. ………………3分
又
平面
平面
平面
. …………4分
(2)过点
在平面
内作
于
,连接
………………5分
则由(1)知AB⊥CH, ∴CH⊥平面
………………6分
于是
就是直线
与平面
所成的角 ………………7分
在
中,CD=
,
; ………………8分
设
,在
中,
………………9分
![]()
………………10分
![]()
,
……11分
又
,![]()
即直线
与平面
所成角的取值范围为
. ………………12分
解法2:
(1)以
所在的直线分别为
轴、
轴、
轴,建立如图所示的空间直角坐标系,则
,…1分
于是,
,
,
.
从而
,即
.…2分
同理
,…3分
即
.又
,
平面
.
又
平面
.
平面
平面
. ………………4分![]()
![]()
(2)设直线
与平面
所成的角为
,平面
的一个
法向量为
,则由
.
得
………………6分
可取
,又
,
于是
, ………………10分
,
,
.又
,
.
即直线
与平面
所成角的取值范围为
. ………………12分
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com