精英家教网 > 高中数学 > 题目详情

【题目】已知关于x的二次函数f(x)=ax2﹣4bx+1. (Ⅰ)设集合A={﹣1,1,2,3,4,5}和B={﹣2,﹣1,1,2,3,4},分别从集合A,B中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.
(Ⅱ)设点(a,b)是区域 内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.

【答案】解:要使函数y=f(x)在区间[1,+∞)上是增函数,则a>0且 ,即a>0且2b≤a. (Ⅰ)所有(a,b)的取法总数为6×6=36个,满足条件的(a,b)有(1,﹣2),(1,﹣1),(2,﹣2),(2,﹣1),(2,1),(3,﹣2),(3,﹣1),(3,1),(4,﹣2),(4,﹣1),(4,1),(4,2),(5,﹣2),(5,﹣1),(5,1),(5,2)共16个,
所以,所求概率
(Ⅱ)如图,求得区域 的面积为
,求得
所以区域内满足a>0且2b≤a的面积为
所以,所求概率
【解析】(Ⅰ)分a=1,2,3,4,5 这五种情况来研究a>0,且 ≤1的取法共有16种,而所有的取法共有6×6=36 种,从而求得所求事件的概率.(Ⅱ)由条件可得,实验的所有结果构成的区域的面积等于SOMN= ×8×8=32,满足条件的区域的面积为SPOM= ×8× = ,故所求的事件的概率为 P= ,运算求得结果.
【考点精析】解答此题的关键在于理解几何概型的相关知识,掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是(
A.众数
B.平均数
C.中位数
D.标准差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷、0.76万公顷,则沙漠增加数y(万公顷)关于年数x的函数关系较为近似的是(
A.y=0.2x
B.
C.
D.y=0.2+log16x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),曲线的参数方程为为参数),在以为极点, 轴的正半轴为极轴的极坐标系中,射线,与各有一个交点,当时,这两个交点间的距离为2,当,这两个交点重合.

1)分别说明是什么曲线,并求出的值;

2)设当时, 的交点分别为,当的交点分别为,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)判断f(x)的奇偶性并证明;
(2)若f(x)的定义域为[α,β](β>α>0),判断f(x)在定义域上的增减性,并加以证明;
(3)若0<m<1,使f(x)的值域为[logmm(β﹣1),logmm(α﹣1)]的定义域区间[α,β](β>α>0)是否存在?若存在,求出[α,β],若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的一个焦点是 为坐标原点,且椭圆短轴的两个三等分点与一个焦点构成正三角形,过点的直线交椭圆于点.

(1)求椭圆的方程;

(2)设为椭圆上一点,且满足,当,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,c<0且a,b,c这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则 ﹣2c的最小值等于(
A.9
B.10
C.3
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(x﹣1)ex﹣kx2(k∈R).
(1)当k=1时,求函数f(x)的单调区间;
(2)当 时,求函数f(x)在[0,k]上的最大值M.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an} 中,a1=1,a2= ,且 (n=2,3,4,…)
(1)求a3、a4的值;
(2)设bn= (n∈N*),试用bn表示bn+1并求{bn} 的通项公式;
(3)设cn= (n∈N*),求数列{cn}的前n项和Sn

查看答案和解析>>

同步练习册答案