| A. | $\frac{\sqrt{10}}{10}$ | B. | $\frac{\sqrt{5}}{5}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{3\sqrt{10}}{10}$ |
分析 利用向量的数量积将条件进行转化,利用数形结合进行求解即可得到结论.
解答
解:设z=$\frac{\overrightarrow{OA}•\overrightarrow{OM}}{|\overrightarrow{OM|}}$,则z=$\left|\overrightarrow{OA}\right|×\frac{\overrightarrow{OA}•\overrightarrow{OM}}{\left|\overrightarrow{OA}\right||\overrightarrow{OM|}}$=|$\overrightarrow{OA}$|•cos∠A0M,
∵O(0,0),A(1,0).
∴|$\overrightarrow{OA}$|=1,
∴z=|$\overrightarrow{OA}$|•cos∠A0M=cos∠A0M,
作出不等式组对应的平面区域如图:
要使cos∠A0M最小,
则∠A0M最大,
即当M在C处时,∠A0M最大,
由$\left\{\begin{array}{l}x+y=4\\ x-y=-2\end{array}\right.$得$\left\{\begin{array}{l}x=1\\ y=3\end{array}\right.$,即C(1,3),
则|AC|=$\sqrt{10}$,
则cos∠A0M=$\frac{1}{\sqrt{10}}$=$\frac{\sqrt{10}}{10}$,
故选:A.
点评 本题主要考查线性规划的应用,利用向量的数量积将条件进行转化是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 0个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 2 | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 极大值为$\frac{4}{27}$,极小值为0 | B. | 极大值为0,极小值为$\frac{4}{27}$ | ||
| C. | 极小值为-$\frac{4}{27}$,极大值为0 | D. | 极大值为-$\frac{4}{27}$,极小值为0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com