精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
2
x2+alnx(a∈R)

(1)若a=-1,求f(x)的单调递增区间;
(2)当x>1时,f(x)>lnx恒成立,求实数a的取值范围.
(1)∵f(x)=
1
2
x2+alnx(a∈R)

∴若a=-1时,f(x)=x-
1
x
,x>0,
由f′(x)>0,得
x2-1
x
>0
,又x>0,解得x>1,
所以函数f(x)的单调递增区间为(1,+∞).
(2)依题意得f(x)-lnx>0,
1
2
x2+alnx-lnx>0(x>1)

(a-1)lnx>-
1
2
x2

∵x>1,∴lnx>0
a-1>
-
1
2
x2
lnx

a-1>(
-
1
2
x2
lnx
)max

g(x)>
-
1
2
x2
lnx
g(x)>
-xlnx+
1
2
x
(lnx)2

令g′(x)=0,解得x=e
1
2

1<x<e
1
2
时,g′(x)>0,g(x)在(0,e
1
2
)上单调递增;
x>e
1
2
时,g′(x)<0,g(x)在(e
1
2
,+∞)上单调递减;
g(x)max=g(e
1
2
)=-e

∴a-1>-e,即a>1-e.
故实数a的取值范围是(1-e,+∞).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案