精英家教网 > 高中数学 > 题目详情
(2013•东城区二模)在数列{an}中,若对任意的n∈N*,都有
an+2
an+1
-
an+1
an
=t
(t为常数),则称数列{an}为比等差数列,t称为比公差.现给出以下命题:
①等比数列一定是比等差数列,等差数列不一定是比等差数列;
②若数列{an}满足an=
2n-1
n2
,则数列{an}是比等差数列,且比公差t=
1
2

③若数列{cn}满足c1=1,c2=1,cn=cn-1+cn-2(n≥3),则该数列不是比等差数列;
④若{an}是等差数列,{bn}是等比数列,则数列{anbn}是比等差数列.
其中所有真命题的序号是(  )
分析:①由等比数列的特点,代入可知满足新定义,若等差数列的公差d=0时满足题意,当d≠0时,不是比等差数列,可知正确;②代入新定义验证可知,不满足;③由递推公式计算数列的前4项,可得
c3
c2
-
c2
c1
c4
c3
-
c3
c2
,故该数列不是比等差数列;④可举{an}为0列,则数列{anbn}为0列,显然不满足定义.
解答:解:①若数列{an}为等比数列,且公比为q,则
an+2
an+1
-
an+1
an
=q-q=0
,为常数,故等比数列一定是比等差数列,
若数列{an}为等差数列,且公差为d,当d=0时,
an+2
an+1
-
an+1
an
=1-1=0
,为常数,是比等差数列,
当d≠0时,
an+2
an+1
-
an+1
an
不为常数,故不是比等差数列,故等差数列不一定是比等差数列,故正确;
②若数列{an}满足an=
2n-1
n2
,则
an+2
an+1
-
an+1
an
=
2(n+1)2
(n+2)2
-
2n2
(n+1)2
不为常数,故数列{an}不是比等差数列,故错误;
③若数列{cn}满足c1=1,c2=1,cn=cn-1+cn-2(n≥3),可得c3=2,c4=3,故
c3
c2
-
c2
c1
=1
c4
c3
-
c3
c2
=-
1
2

显然
c3
c2
-
c2
c1
c4
c3
-
c3
c2
,故该数列不是比等差数列,故正确;
④若{an}是等差数列,{bn}是等比数列,可举{an}为0列,则数列{anbn}为0列,显然不满足定义,即数列{anbn}不是比等差数列,故错误.
故答案为:D
点评:本题考查命题真假的判断与应用,涉及等差数列和等比数列以及新定义,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•东城区二模)已知函数f(x)=lnx+
a
x
(a>0).
(1)求f(x)的单调区间;
(2)如果P(x0,y0)是曲线y=f(x)上的任意一点,若以P(x0,y0)为切点的切线的斜率k≤
1
2
恒成立,求实数a的最小值;
(3)讨论关于x的方程f(x)=
x3+2(bx+a)
2x
-
1
2
的实根情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)f(x)=
-
2
x
 ,   x<0
3+log2x ,  x>0
,则f(f(-1))等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)根据表格中的数据,可以断定函数f(x)=lnx-
3
x
的零点所在的区间是(  )
x 1 2 e 3 5
lnx 0 0.69 1 1.10 1.61
3
x
3 1.5 1.10 1 0.6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)对定义域的任意x,若有f(x)=-f(
1
x
)
的函数,我们称为满足“翻负”变换的函数,下列函数:
y=x-
1
x

②y=logax+1,
y=
x,0<x<1
0,x=1
-
1
x
,x>1

其中满足“翻负”变换的函数是
①③
①③
. (写出所有满足条件的函数的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时,f(x)+xf′(x)<0(其中f′(x)是f(x)的导函数),若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3
1
9
)•f(log3
1
9
),则a,b,c的大小关系是(  )

查看答案和解析>>

同步练习册答案