精英家教网 > 高中数学 > 题目详情

已知函数,其中a为常数.

(1) 当时,求的最大值;

(2) 若在区间(0,e]上的最大值为-3,求a的值;

(3) 当 时,试推断方程=是否有实数解.

 解:(1) 当a=-1时,f(x)=-x+lnx,

f′(x)=-1+

当0<x<1时,f′(x)>0;当x>1时,f′(x)<0.

∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数,=f(1)=-1

(2) ∵f′(x)=a+,x∈(0,e],

① 若a≥,则f′(x)≥0, f(x)在(0,e]上增函数

=f(e)=ae+1≥0.不合题意

② 若a<,则由f′(x)>0>0,即0<x<

由f(x)<0<0,即<x≤e.  从而f(x)在上增函数,在为减函数

=f=-1+ln

令-1+ln=-3,则ln=-2∴=,即a=.

 ∵<,

∴a=为所求

(3) 由(Ⅰ)知当a=-1时=f(1)=-1,

∴|f(x)|≥1

又令g(x)=,g′(x)=,令g′(x)=0,得x=e,

当0<x<e时,g′(x)>0,g(x)  在(0,e)单调递增;当x>e时,g′(x)<0,g(x) 在(e,+∞)单调递减∴=g(e)= <1, ∴g(x)<1 

∴|f(x)|>g(x),即|f(x)|>     ∴方程|f(x)|=没有实数解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1a-x
-1
(其中a为常数,x≠a).利用函数y=f(x)构造一个数列{xn},方法如下:
对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果xi不在定义域中,那么构造数列的过程就停止.
(Ⅰ)当a=1且x1=-1时,求数列{xn}的通项公式;
(Ⅱ)如果可以用上述方法构造出一个常数列,求a的取值范围;
(Ⅲ)是否存在实数a,使得取定义域中的任一实数值作为x1,都可用上述方法构造出一个无穷数列{xn}?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)满足f(a-tanθ)=cotθ-1,(其中,a、θ∈R均为常数)
(1)求函数y=f(x)的解析式;
(2)利用函数y=f(x)构造一个数列{xn},方法如下:
对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,构造数列的过程继续下去;如果xi不在定义域中,则构造数列的过程停止.
①如果可以用上述方法构造出一个常数列{xn},求a的取值范围;
②如果取定义域中的任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求a实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•石景山区一模)已知函数y=f(x)对于任意θ≠
2
(k∈Z),都有式子f(a-tanθ)=cotθ-1成立(其中a为常数).
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)利用函数y=f(x)构造一个数列,方法如下:
对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果xi不在定义域中,那么构造数列的过程就停止.
(ⅰ)如果可以用上述方法构造出一个常数列,求a的取值范围;
(ⅱ)是否存在一个实数a,使得取定义域中的任一值作为x1,都可用上述方法构造出一个无穷数列{xn}?若存在,求出a的值;若不存在,请说明理由;
(ⅲ)当a=1时,若x1=-1,求数列{xn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(1+x),g(x)=loga(1+kx),其中a>0且a≠1.
(Ⅰ)当k=-2时,求函数h(x)=f(x)+g(x)的定义域;
(Ⅱ)若函数H(x)=f(x)-g(x)是奇函数(不为常函数),求实数k的值.

查看答案和解析>>

科目:高中数学 来源:2010年高考数学新题型解析选编(7)(解析版) 题型:解答题

已知函数y=f(x)满足f(a-tanθ)=cotθ-1,(其中,a、θ∈R均为常数)
(1)求函数y=f(x)的解析式;
(2)利用函数y=f(x)构造一个数列{xn},方法如下:
对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,构造数列的过程继续下去;如果xi不在定义域中,则构造数列的过程停止.
①如果可以用上述方法构造出一个常数列{xn},求a的取值范围;
②如果取定义域中的任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求a实数的值.

查看答案和解析>>

同步练习册答案