ÒÑÖªº¯Êýf£¨x£©=
1a-x
-1
£¨ÆäÖÐaΪ³£Êý£¬x¡Ùa£©£®ÀûÓú¯Êýy=f£¨x£©¹¹ÔìÒ»¸öÊýÁÐ{xn}£¬·½·¨ÈçÏ£º
¶ÔÓÚ¸ø¶¨µÄ¶¨ÒåÓòÖеÄx1£¬Áîx2=f£¨x1£©£¬x3=f£¨x2£©£¬¡­£¬xn=f£¨xn-1£©£¬¡­
ÔÚÉÏÊö¹¹Ôì¹ý³ÌÖУ¬Èç¹ûxi£¨i=1£¬2£¬3£¬¡­£©ÔÚ¶¨ÒåÓòÖУ¬ÄÇô¹¹ÔìÊýÁеĹý³Ì¼ÌÐøÏÂÈ¥£»Èç¹ûxi²»ÔÚ¶¨ÒåÓòÖУ¬ÄÇô¹¹ÔìÊýÁеĹý³Ì¾ÍÍ£Ö¹£®
£¨¢ñ£©µ±a=1ÇÒx1=-1ʱ£¬ÇóÊýÁÐ{xn}µÄͨÏʽ£»
£¨¢ò£©Èç¹û¿ÉÒÔÓÃÉÏÊö·½·¨¹¹Ôì³öÒ»¸ö³£ÊýÁУ¬ÇóaµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©ÊÇ·ñ´æÔÚʵÊýa£¬Ê¹µÃÈ¡¶¨ÒåÓòÖеÄÈÎһʵÊýÖµ×÷Ϊx1£¬¶¼¿ÉÓÃÉÏÊö·½·¨¹¹Ôì³öÒ»¸öÎÞÇîÊýÁÐ{xn}£¿Èô´æÔÚ£¬Çó³öaµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨¢ñ£©µ±a=1ʱ£¬f(x)=
x
1-x
£¬ËùÒÔ£¬xn+1=
xn
1-xn
£®Á½±ßÈ¡µ¹Êý£¬µÃ
1
xn+1
=
1-xn
xn
=
1
xn
-1
£¬ÓɵȲîÊýÁж¨ÒåÇó½â£®
£¨¢ò£©¹¹Ôì³öÒ»¸ö³£ÊýÁУ¬¼´£ºµ±x¡Ùaʱ£¬·½³Ìf£¨x£©=xÓн⣬¼´·½³Ìx2+£¨1-a£©x+1-a=0Óв»µÈÓÚaµÄ½â£®ÓÉ¡÷=£¨1-a£©2-4£¨1-a£©¡Ý0Çó½â£®
£¨¢ó£©ÓÃÉÏÊö·½·¨¹¹Ôì³öÒ»¸öÎÞÇîÊýÁÐ{xn}£¬¼´£º
x+1-a
a-x
=aÔÚRÖÐÎ޽⣮¼´µ±x¡Ùaʱ£¬·½³Ì£¨1+a£©x=a2+a-1ÎÞʵÊý½â£®ÔòÓÐ
1+a=0
a2+a-1¡Ù0.
Çó½â£¬ÓнâÔò´æÔÚ£¬ÎÞ½âÔò²»´æÔÚ£®
½â´ð£º½â£º£¨¢ñ£©µ±a=1ʱ£¬f£¨x£©=
x
1-x
£¬
ËùÒÔ£¬xn+1=
xn
1-xn
£®
Á½±ßÈ¡µ¹Êý£¬µÃ
1
xn+1
=
1-xn
xn
=
1
xn
-1£¬
¼´
1
xn+1
-
1
xn
=-1£®ÓÖ
1
x1
=-1£¬
ËùÒÔÊýÁÐ{
1
xn
}ÊÇÊ×ÏîΪ-1£¬¹«²îd=-1µÄµÈ²îÊýÁУ®£¨3·Ö£©
¹Ê
1
xn
=-1+£¨n-1£©•£¨-1£©=-n£¬
ËùÒÔxn=-
1
n
£¬
¼´ÊýÁÐ{xn}µÄͨÏʽΪxn=-
1
n
£¬n¡ÊN*£®£¨4·Ö£©
£¨¢ò£©¸ù¾ÝÌâÒ⣬ֻÐèµ±x¡Ùaʱ£¬·½³Ìf£¨x£©=xÓн⣬£¨5·Ö£©
¼´·½³Ìx2+£¨1-a£©x+1-a=0Óв»µÈÓÚaµÄ½â£®
½«x=a´úÈë·½³Ì×ó±ß£¬×ó±ßΪ1£¬ÓëÓұ߲»ÏàµÈ£®
¹Ê·½³Ì²»¿ÉÄÜÓнâx=a£®£¨7·Ö£©
ÓÉ¡÷=£¨1-a£©2-4£¨1-a£©¡Ý0£¬µÃa¡Ü-3»òa¡Ý1£®
¼´ÊµÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨-¡Þ£¬-3]¡È[1£¬+¡Þ£©£®£¨10·Ö£©
£¨¢ó£©¼ÙÉè´æÔÚʵÊýa£¬Ê¹µÃÈ¡¶¨ÒåÓòÖеÄÈÎһʵÊýÖµ×÷Ϊx1£¬¶¼¿ÉÒÔÓÃÉÏÊö·½·¨¹¹Ôì³öÒ»¸öÎÞÇîÊýÁÐ{xn}£¬ÄÇô¸ù¾ÝÌâÒâ¿ÉÖª£¬
x+1-a
a-x
=aÔÚRÖÐÎ޽⣬£¨12·Ö£©
¼´µ±x¡Ùaʱ£¬·½³Ì£¨1+a£©x=a2+a-1ÎÞʵÊý½â£®
ÓÉÓÚx=a²»ÊÇ·½³Ì£¨1+a£©x=a2+a-1µÄ½â£¬
ËùÒÔ¶ÔÓÚÈÎÒâx¡ÊR£¬·½³Ì£¨1+a£©x=a2+a-1ÎÞʵÊý½â£¬
Òò´Ë
1+a=0
a2+a-1¡Ù0.
½âµÃa=-1£®
¹Êa=-1¼´ÎªËùÇóaµÄÖµ£®£¨14·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éº¯ÊýÓëÊýÁеÄ×ÛºÏÔËÓã¬Ö÷ÒªÉæ¼°Á˵ȲîÊýÁеĶ¨Ò壬ͨÏîÊýÁеĴæÔÚÐÔÓë·½³ÌÓÐÎÞ¸ùµÄ¹Øϵ£®ÊôÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
1
|x|
£¬g£¨x£©=1+
x+|x|
2
£¬Èôf£¨x£©£¾g£¨x£©£¬ÔòʵÊýxµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A¡¢£¨-¡Þ£¬-1£©¡È£¨0£¬1£©
B¡¢(-¡Þ£¬-1)¡È(0£¬
-1+
5
2
)
C¡¢(-1£¬0)¡È(
-1+
5
2
£¬+¡Þ)
D¡¢(-1£¬0)¡È(0£¬
-1+
5
2
)

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
1£¬x¡ÊQ
0£¬x∉Q
£¬Ôòf[f£¨¦Ð£©]=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
1-x
ax
+lnx(a£¾0)

£¨1£©Èôº¯Êýf£¨x£©ÔÚ[1£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨2£©µ±a=1ʱ£¬Çóf£¨x£©ÔÚ[
1
2
£¬2
]ÉϵÄ×î´óÖµºÍ×îСֵ£»
£¨3£©µ±a=1ʱ£¬ÇóÖ¤¶ÔÈÎÒâ´óÓÚ1µÄÕýÕûÊýn£¬lnn£¾
1
2
+
1
3
+
1
4
+
¡­+
1
n
ºã³ÉÁ¢£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=1+cos2x-2sin2£¨x-
¦Ð
6
£©£¬ÆäÖÐx¡ÊR£¬ÔòÏÂÁнáÂÛÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=1+logax£¨a£¾0£¬a¡Ù1£©£¬Âú×ãf£¨9£©=3£¬Ôòf-1£¨log92£©µÄÖµÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸