精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)
分析:把函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,代入不等式f(x)>g(x),得到一个绝对值不等式,对x>0,和x<0两种情况进行讨论,把求的结果求并集,就是原不等式的解集.
解答:解:∵f(x)=
1
|x|
,g(x)=1+
x+|x|
2
且f(x)>g(x)
1
|x|
>1+
x+|x|
2
(x≠0)
1°当x>0时,原不等式可化为
1
x
>1+
x+x
2

即x2+x-1<0,解得
-1-
5
2
<x<
-1+
5
2

所以不等式的解集为(0,
-1+
5
2
);
2°当x<0时,原不等式可化为-
1
x
>1

解得x>-1,所以不等式的解集为(-1,0)
综上,不等式的解集为(-1,0)∪(0,
-1+
5
2
);
故选D.
点评:考查绝对值的代数意义,去绝对值的过程体现了分类讨论的思想方法,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案