精英家教网 > 高中数学 > 题目详情

若函数f(x)=ax3+bx2+cx+d(a>0)在R上无极值,则必有


  1. A.
    b2-3ac>0
  2. B.
    a2-3bc>0
  3. C.
    b2-3ac≤0
  4. D.
    a2-3bc<0
C
分析:函数f(x)=ax3+bx2+cx+d(a>0)在R上无极值,则其导数值非正或非负,由于其导数为开口向上的二次函数,只须导函数相应二次方程的判别式非正即可即可得到函数在R上无极值的条件.
解答:由已知f(x)=ax3+bx2+cx+d(a>0)
其导函数为f'(x)=3ax2+2bx+c,
∵数f(x)=ax3+bx2+cx+d(a>0)在R上无极值
∴f'(x)=3ax2+2bx+c≥0恒成立
∴4b2-12ac≤0,即b2-3ac≤0
即函数f(x)=ax3+bx2+cx+d(a>0)在R上无极值 的条件是b2-3ac≤0
故选 C.
点评:本题的考点是函数在某点取得极值的条件,考查函数没有极值时导数的值域的数字特征,并将这一关系转化为相应的不等式.本题在求解时用到了等价转化的思想.转化是数学中解决问题的常用技巧,做完此题后要好好体会其方式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

①命题“对任意的x∈R,x3-x2+1≤0”的否定是“存在x∈R,x3-x2+1>0”;
②函数f(x)=2x-x2的零点有2个;
③若函数f(x)=x2-|x+a|为偶函数,则实数a=0;
④函数y=sinx(x∈[-π,π])图象与x轴围成的图形的面积是S=
x
-x
sinxdx;
⑤若函数f(x)=
ax-5(x>6)
(4-
a
2
)x+4(x≤6)
,在R上是单调递增函数,则实数a的取值范围为(1,8).
其中真命题的序号是
①③
①③
(写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),其定义域为D,若任取x1、x2∈D,且x1≠x2,若f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)],则称f(x)为定义域上的凸函数.
(1)设f(x)=ax2(a>0),试判断f(x)是否为其定义域上的凸函数,并说明原因;
(2)若函数f(x)=㏒ax(a>0,且a≠1)为其定义域上的凸函数,试求出实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax(a>0,a≠1)的反函数记为y=g(x),g(16)=2,则f(
12
)
=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax-2+2010(a>0且a≠1)恒过一定点,此定点坐标为
(2,2011)
(2,2011)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)若函数f(x)=ax+b的零点为x=2,则函数g(x)=bx2-ax的零点是x=0和x=
-
1
2
-
1
2

查看答案和解析>>

同步练习册答案