分析 (Ⅰ)由函数f(x)=x2+bx+c的图象过点(-1,3),且关于直线x=1对称,列出方程组,能求出b和c,由此能求出结果.
(Ⅱ)根据1≤m<3,-1≤m<1,m<-1三种情况分类讨论,能求出f(x)的值域.
解答 解:(Ⅰ)∵函数f(x)=x2+bx+c的图象过点(-1,3),且关于直线x=1对称,
∴$\left\{\begin{array}{l}{f(-1)=1-b+c=3}\\{-\frac{b}{2}=1}\end{array}\right.$,
解得b=-2,c=0,
∴f(x)=x2-2x.
(Ⅱ)当1≤m<3时,f(x)min=f(m)=m2-2m,
f(x)max=f(3)=9-6=3,
∴f(x)的值域为[m2-2m,3];
当-1≤m<1时,f(x)min=f(1)=1-2=-1,
f(x)max=f(-1)=1+2=3,
∴f(x)的值域为[-1,3].
当m<-1时,f(x)min=f(1)=1-2=-1,
f(x)max=f(m)=m2-2m,
∴f(x)的值域为[-1,m2-2m].
点评 本查题考查二次函数的解析式的求法,考查函数的值域的求法,考查推理论证能力、运算求解能力,考查化归与转化思想、分类与整合思想,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m≥4或m≤-2 | B. | m≥2或m≤-4 | C. | -2<m<4 | D. | -4<m<2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 0 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=-x2 | B. | y=x-1 | C. | y=-ex | D. | y=ln|x| |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com