精英家教网 > 高中数学 > 题目详情
3.已知x>0,y>0,x+2y=1,若不等式$\frac{2}{x}$$+\frac{1}{y}$>m2+2m成立,则实数m的取值范围是(  )
A.m≥4或m≤-2B.m≥2或m≤-4C.-2<m<4D.-4<m<2

分析 $\frac{2}{x}+\frac{1}{y}$=(x+2y)($\frac{2}{x}+\frac{1}{y}$)=$\frac{4y}{x}$+$\frac{x}{y}$+4$≥4+2\sqrt{4}$=8.不等式$\frac{2}{x}$$+\frac{1}{y}$>m2+2m成立?m2+2m<$(\frac{2}{x}+\frac{1}{y})_{min}$,即可求得实数m的取值范围

解答 解:∵x>0,y>0,x+2y=1,∴$\frac{2}{x}+\frac{1}{y}$=(x+2y)($\frac{2}{x}+\frac{1}{y}$)=$\frac{4y}{x}$+$\frac{x}{y}$+4$≥4+2\sqrt{4}$=8.(当$\frac{4y}{x}=\frac{x}{y},即x=2y=\frac{1}{2}时,取等号)$
∵不等式$\frac{2}{x}$$+\frac{1}{y}$>m2+2m成立,∴m2+2m<8,求得-4<m<2
故选:D

点评 本题主要考查了基本不等式在最值问题中的应用.考查了学生分析问题和解决问题的能力.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知正项数列{an}满足a1=1,$(\frac{1}{{{a_{n+1}}}}+\frac{1}{a_n})(\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n})=4$,数列{bn}满足$\frac{1}{b_n}=\frac{1}{{{a_{n+1}}}}+\frac{1}{a_n}$,记{bn}的前n项和为Tn,则T20的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果a>0>b且a+b>0,那么以下不等式正确的个数是(  )
①a2b<b3;②$\frac{1}{a}$>0>$\frac{1}{b}$;③a3<ab2;④a3>b3
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=$\left\{\begin{array}{l}{|lnx|,0<x≤1}\\{|lnx-{x}^{2}+2|,x>1}\end{array}\right.$,则函数g(x)=f(x)-1的零点个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知cosθ=-$\frac{3}{5}$($\frac{π}{2}$<θ<π),则cos($θ-\frac{π}{3}$)=(  )
A.$\frac{4\sqrt{3}+3}{10}$B.$\frac{4\sqrt{3}-3}{10}$C.-$\frac{4\sqrt{3}+3}{10}$D.$\frac{4-3\sqrt{3}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=-$\frac{\sqrt{3}}{2}$sinx$-\frac{1}{2}$cosx+1
(1)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)若x∈[0,$\frac{π}{2}$],且f(x)=$\frac{1}{3}$,求cosx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知正四棱锥的底面边长是2,侧面积为12,则该正四棱锥的体积为$\frac{8\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2+bx+c的图象过点(-1,3),且关于直线x=1对称
(Ⅰ)求f(x)的解析式;
(Ⅱ)若m<3,求函数f(x)在区间[m,3]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.7个人排成一队参观某项目,其中ABC三人进入展厅的次序必须是先B再A后C,则不同的列队方式有多少种(  )
A.120B.240C.420D.840

查看答案和解析>>

同步练习册答案