精英家教网 > 高中数学 > 题目详情
15.已知正四棱锥的底面边长是2,侧面积为12,则该正四棱锥的体积为$\frac{8\sqrt{2}}{3}$.

分析 由题意画出图形,求出正四棱锥的斜高,进一步求出高,代入棱锥体积公式得答案.

解答 解:如图,∵P-ABCD为正四棱锥,且底面边长为2,
过P作PG⊥BC于G,作PO⊥底面ABCD,垂足为O,连接OG.
由侧面积为12,即4×$\frac{1}{2}×2×PG=12$,即PG=3.
在Rt△POG中,PO=$\sqrt{{3}^{2}-{1}^{2}}=2\sqrt{2}$
∴正四棱锥的体积为V=$\frac{1}{3}×{s}_{ABCD}×PO=\frac{8\sqrt{2}}{3}$
故答案为:$\frac{8\sqrt{2}}{3}$

点评 本题考查棱锥体积的求法,考查数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.现有一只不透明的袋子里面装有6个小球,其中3个为红球,3个为黑球,这些小球除颜色外无任何差异,现从袋中一次性地随机摸出2个小球.
(1)求这两个小球都是红球的概率;
(2)记摸出的小球中红球的个数为X,求随机变量X的概率分布及其均值E(X ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.从6名男生和4名女生中任选4人参加比赛,设被选中女生的人数为随机变量ξ,
求(Ⅰ)ξ的分布列;
(Ⅱ)所选女生不少于2人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知x>0,y>0,x+2y=1,若不等式$\frac{2}{x}$$+\frac{1}{y}$>m2+2m成立,则实数m的取值范围是(  )
A.m≥4或m≤-2B.m≥2或m≤-4C.-2<m<4D.-4<m<2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an]的前n项和记为Sn,且满足Sn=2an-n,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明:$\frac{n}{2}$$-\frac{1}{3}$$<\frac{{a}_{1}}{{a}_{2}}$$+\frac{{a}_{2}}{{a}_{3}}$+…$+\frac{{a}_{n}}{{a}_{n+1}}$$<\frac{n}{2}$(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若M={1,2},N={2,3},则M∩N=(  )
A.{2}B.{1,2,3}C.{1,3}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设a,b,c为三个不同的实数,记集合A=$\left\{\begin{array}{l}{x∈R|\left\{\begin{array}{l}{{x}^{2}+ax+1=0}\\{{x}^{2}+bx+c=0}\end{array}\right.\left.\right\}}\end{array}\right.$,B=$\left\{\begin{array}{l}{x∈R|\left\{\begin{array}{l}{{x}^{2}+x+a=0}\\{{x}^{2}+cx+b=0}\end{array}\right.\left.,\right\}}\end{array}\right.$,若集合A,B中元素个数都只有一个,则b+c=(  )
A.1B.0C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x3+ax2+1(a∈R).
(1)当a>0时,求函数f(x)的极值;
(2)若f(x)在区间[1,2]上单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某地区数学考试的成绩X服从正态分布X~N(μ,σ2),正态分布密度函数为$f(x)=\frac{1}{{\sqrt{2π}σ}}{e^{-\frac{{{{(x-σ)}^2}}}{{2{x^2}}}}}$,x∈(-∞,+∞),其密度曲线如图所示,则成绩X位于区间(86,94]的概率是0.0215.(结果保留3为有效数字)本题用到参考数据如下:P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974.

查看答案和解析>>

同步练习册答案