精英家教网 > 高中数学 > 题目详情
5.某地区数学考试的成绩X服从正态分布X~N(μ,σ2),正态分布密度函数为$f(x)=\frac{1}{{\sqrt{2π}σ}}{e^{-\frac{{{{(x-σ)}^2}}}{{2{x^2}}}}}$,x∈(-∞,+∞),其密度曲线如图所示,则成绩X位于区间(86,94]的概率是0.0215.(结果保留3为有效数字)本题用到参考数据如下:P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974.

分析 利用图象得出μ和σ,利用参考数据计算P(54<X<86),P(46<X<94),从而得出结论.

解答 解:由正态密度图象可知μ=70,σ=8,
∴P(μ-2σ<X<μ+2σ)=P(54<X<86)=0.9544,
P(μ-3σ<X<μ+3σ)=P(46<X<94)=0.9974,
∴P(86<X≤94)=$\frac{1}{2}$(0.9974-0.9544)=0.0215.
故答案为:0.0215.

点评 本题考查了正态分布的对称性特点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知正四棱锥的底面边长是2,侧面积为12,则该正四棱锥的体积为$\frac{8\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设向量$\overrightarrow{a}$=(sinx,$\sqrt{3}$cosx),$\overrightarrow{b}$=(-1,1),$\overrightarrow{c}$=(1,1),其中x∈(0,π].
(1)若($\overrightarrow{a}$+$\overrightarrow{b}$)∥$\overrightarrow{c}$,求实数x的值;
(2)若$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$,求函数sinx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.7个人排成一队参观某项目,其中ABC三人进入展厅的次序必须是先B再A后C,则不同的列队方式有多少种(  )
A.120B.240C.420D.840

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和为Sn,且Sn=$\frac{3}{2}{n^2}+\frac{3}{2}$n.
(1)求{an}的通项公式;    
(2)求$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=2$\sqrt{3}$|$\overrightarrow{a}$|,且($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=0,则$\frac{|\overrightarrow{a}|}{|\overrightarrow{b}|}$为(  )
A.0B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知定义在R上的函数f(x)=ax(0<a<1),且f(1)+f(-1)=$\frac{10}{3}$,若数列{f(x)}(n∈N*)的前n项和等于$\frac{40}{81}$.则n=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三棱锥P-ABC中,AC=BC=$\sqrt{2}$,∠ACB=90°,AP=BP=AB,PC⊥AC.
(1)求二面角B-AP-C的正切值;
2)求点C到平面APB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值为

查看答案和解析>>

同步练习册答案