精英家教网 > 高中数学 > 题目详情
15.已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值为

分析 首先分析题目由已知x>0,y>0,x+2y+2xy=8,求x+2y的最小值,猜想到基本不等式的用法,利用a+b≥2 $\sqrt{ab}$代入已知条件,转化为解不等式求最值.

解答 解:考察基本不等式x+2y=8-x•(2y)≥8-($\frac{x+2y}{2}$)2(当且仅当x=2y时取等号)
整理得(x+2y)2+4(x+2y)-32≥0
即(x+2y-4)(x+2y+8)≥0,又x+2y>0,
所以x+2y≥4(当且仅当x=2y时即x=2,y=1时取等号)
则x+2y的最小值是4.
故答案为:4.

点评 此题主要考查基本不等式的用法,对于不等式a+b≥2$\sqrt{ab}$在求最大值、最小值的问题中应用非常广泛,需要同学们多加注意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.某地区数学考试的成绩X服从正态分布X~N(μ,σ2),正态分布密度函数为$f(x)=\frac{1}{{\sqrt{2π}σ}}{e^{-\frac{{{{(x-σ)}^2}}}{{2{x^2}}}}}$,x∈(-∞,+∞),其密度曲线如图所示,则成绩X位于区间(86,94]的概率是0.0215.(结果保留3为有效数字)本题用到参考数据如下:P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知椭圆Γ:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1 (a>b>0)经过不同的三点A($\frac{{\sqrt{5}}}{2}$,$\frac{{\sqrt{5}}}{4}$),B(-$\frac{1}{2}$,-$\frac{3}{4}$),C(C在第三象限),线段BC的中点在直线OA上.
(Ⅰ)求椭圆Γ的方程及点C的坐标;
(Ⅱ)设点P是椭圆Γ上的动点(异于点A、B、C)且直线PB、
PC分别交直线OA于M、N两点,问|OM|•|ON|是否为定值?
若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an},{bn}的通项公式分别是an=(-1)n+2016•a,bn=2+$\frac{{{{({-1})}^{n+2017}}}}{n}$,若an<bn,对任意n∈N+恒成立,则实数a的取值范围是$[{-2,\frac{3}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{lnx+a}{x}$,a∈R.
(1)求函数f(x)的单调区间;
(2)设函数g(x)=(x-k)ex+k,k∈Z,e=2.71828…为自然对数的底数,当a=1时,若?x1∈(0,+∞),?x2∈(0,+∞),不等式5f(x1)+g(x2)>0成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数$\frac{1+i}{1-i}$=(  )
A.iB.-iC.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知某产品出厂前需要依次通过三道严格的审核程序,三道审核程序通过的概率依次为$\frac{9}{10}$,$\frac{8}{9}$,$\frac{7}{8}$,每道程序是相互独立的,且一旦审核不通过就停止审核,该产品只有三道程序都通过才能出厂销售
(Ⅰ)求审核过程中只通过两道程序的概率;
(Ⅱ)现有3件该产品进入审核,记这3件产品可以出厂销售的件数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某舰艇在A处测得一遇险渔船在北偏东45°距离A处10海里的C处,此时得知,该渔船正沿南偏东75°方向以每小时9海里的速度向一小岛靠近,舰艇时速为21海里,求舰艇追上渔船的最短时间(单位:小时)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若关于x的方程x2-mx+m=0没有实数根,则实数m的取值范围是(0,4).

查看答案和解析>>

同步练习册答案