·ÖÎö £¨¢ñ£©½«A£¬B´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£¬ÀûÓÃÖеã×ø±ê¹«Ê½ÇóµÃDµã×ø±ê£¬ÇóµÃÖ±ÏßOAµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉÇóµÃmºÍnµÄÖµ£¬¼´¿ÉÇóµÃCµã×ø±ê£»
£¨¢ò£©¸ù¾ÝÖ±ÏßµÄбÂʹ«Ê½£®ÇóµÃy1¼°y2£¬ÓÉx02=$\frac{5}{2}$-4y02£¬´úÈë¼´¿ÉÇóµÃy1y2£¬ÓÉ|OM|•|ON|=$\sqrt{5}$Øy1Ø•$\sqrt{5}$Øy2Ø£¬¼´¿ÉÇóµÃ|OM|•|ON|Ϊ¶¨Öµ $\frac{25}{16}$£®
½â´ð ½â£º£¨¢ñ£©ÓɵãA£¬BÔÚÍÖÔ²¦£ÉÏ£¬µÃ$\left\{\begin{array}{l}{\frac{5}{4{a}^{2}}+\frac{5}{16{b}^{2}}=1}\\{\frac{1}{4{a}^{2}}+\frac{9}{16{b}^{2}}=1}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{{a}^{2}=\frac{5}{2}}\\{{b}^{2}=\frac{5}{8}}\end{array}\right.$£¬
¡àÍÖÔ²¦£µÄ·½³ÌΪ$\frac{{x}^{2}}{\frac{5}{2}}+\frac{{y}^{2}}{\frac{5}{8}}=1$ ¡£¨4·Ö£©
ÉèC£¨m£¬n£©£¬ÔòBCµÄÖеãD£¨$\frac{2m-1}{4}$£¬$\frac{4n-3}{8}$£©£¬¡ßDÔÚÖ±ÏßOAÉÏ
ÓÉÒÑÖª£¬ÇóµÃÖ±ÏßOAµÄ·½³ÌΪx-2y=0£¬´Ó¶øm=2n-1£¬¢Ù
ÓÖµãCÔÚÍÖÔ²¦£ÉÏ£¬¹Ê2m2+8n2=5£¬¢Ú
ÓÉ¢Ù¢Ú½âµÃn=$\frac{3}{4}$£¨ÉáÈ¥£©»òn=-$\frac{1}{4}$£¬Ôòm=-$\frac{3}{2}$£¬
¡àµãCµÄ×ø±êΪ£¨-$\frac{3}{2}$£¬-$\frac{1}{4}$£©£» ¡£¨6·Ö£©
£¨¢ò£©ÉèP£¨x0£¬y0£©£¬M£¨2y1£¬y1£©£¬N£¨2y2£¬y2£©£¬
¡ßP£¬B£¬MÈýµã¹²Ïߣ¬¡à$\frac{{y}_{1}+\frac{3}{4}}{2{y}_{1}+\frac{1}{2}}$=$\frac{{y}_{0}+\frac{3}{4}}{{x}_{0}+\frac{1}{2}}$£¬y1=$\frac{3{x}_{0}-2{y}_{0}}{4£¨2{y}_{0}-{x}_{0}+1£©}$£¬
¡ßP£¬C£¬MÈýµã¹²Ïߣ¬¡à$\frac{{y}_{2}+\frac{1}{4}}{2{y}_{2}+\frac{3}{2}}$=$\frac{{y}_{0}+\frac{1}{4}}{{x}_{0}+\frac{3}{2}}$£¬y2=$\frac{{x}_{0}-6{y}_{0}}{4£¨2{y}_{0}-{x}_{0}-1£©}$£¬¡£¨8·Ö£©
¡ßµãPÔÚÍÖÔ²¦£ÉÏ£¬
¡à2x02+8y02=5£¬x02=$\frac{5}{2}$-4y02£¬
¡ày1y2=$\frac{£¨3{x}_{0}-2{y}_{0}£©£¨{x}_{0}-6{y}_{0}£©}{16[£¨2{y}_{0}-{x}_{0}£©^{2}-1]}$=$\frac{3{x}_{0}^{2}-20{x}_{0}{y}_{0}+12{y}_{0}^{2}}{16£¨4{y}_{0}^{2}+{x}_{0}^{2}-4{x}_{0}{y}_{0}-1£©}$
=$\frac{3£¨\frac{5}{2}-4{y}_{0}^{2}£©-20{x}_{0}{y}_{0}+12{y}_{0}^{2}}{16£¨\frac{5}{2}-4{x}_{0}{y}_{0}-1£©}$=$\frac{5£¨\frac{3}{2}-4{x}_{0}{y}_{0}£©}{16£¨\frac{3}{2}-4{x}_{0}{y}_{0}£©}$=$\frac{5}{16}$£¬¡£¨10·Ö£©
¡à|OM|•|ON|=$\sqrt{5}$Øy1Ø•$\sqrt{5}$Øy2Ø=5Øy1y2Ø=$\frac{25}{16}$Ϊ¶¨Öµ£®
¡à|OM|•|ON|Ϊ¶¨Öµ $\frac{25}{16}$£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬Öеã×ø±ê¹«Ê½µÄÓ¦Óã¬Ö±ÏßµÄбÂʹ«Ê½£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-¡Þ£¬$\sqrt{2}$] | B£® | £¨-¡Þ£¬$\frac{3}{2}$£© | C£® | £¨-¡Þ£¬$\frac{9}{4}$] | D£® | [$\sqrt{2}$£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{¦Ð}{6}$ | B£® | $\frac{¦Ð}{3}$ | C£® | $\frac{¦Ð}{2}$ | D£® | $\frac{2¦Ð}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com