6£®Èçͼ£¬ÒÑÖªÍÖÔ²¦££º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1 £¨a£¾b£¾0£©¾­¹ý²»Í¬µÄÈýµãA£¨$\frac{{\sqrt{5}}}{2}$£¬$\frac{{\sqrt{5}}}{4}$£©£¬B£¨-$\frac{1}{2}$£¬-$\frac{3}{4}$£©£¬C£¨CÔÚµÚÈýÏóÏÞ£©£¬Ïß¶ÎBCµÄÖеãÔÚÖ±ÏßOAÉÏ£®
£¨¢ñ£©ÇóÍÖÔ²¦£µÄ·½³Ì¼°µãCµÄ×ø±ê£»
£¨¢ò£©ÉèµãPÊÇÍÖÔ²¦£Éϵ͝µã£¨ÒìÓÚµãA¡¢B¡¢C£©ÇÒÖ±ÏßPB¡¢
PC·Ö±ð½»Ö±ÏßOAÓÚM¡¢NÁ½µã£¬ÎÊ|OM|•|ON|ÊÇ·ñΪ¶¨Öµ£¿
ÈôÊÇ£¬Çó³ö¶¨Öµ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©½«A£¬B´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£¬ÀûÓÃÖеã×ø±ê¹«Ê½ÇóµÃDµã×ø±ê£¬ÇóµÃÖ±ÏßOAµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉÇóµÃmºÍnµÄÖµ£¬¼´¿ÉÇóµÃCµã×ø±ê£»
£¨¢ò£©¸ù¾ÝÖ±ÏßµÄбÂʹ«Ê½£®ÇóµÃy1¼°y2£¬ÓÉx02=$\frac{5}{2}$-4y02£¬´úÈë¼´¿ÉÇóµÃy1y2£¬ÓÉ|OM|•|ON|=$\sqrt{5}$Ø­y1Ø­•$\sqrt{5}$Ø­y2Ø­£¬¼´¿ÉÇóµÃ|OM|•|ON|Ϊ¶¨Öµ $\frac{25}{16}$£®

½â´ð ½â£º£¨¢ñ£©ÓɵãA£¬BÔÚÍÖÔ²¦£ÉÏ£¬µÃ$\left\{\begin{array}{l}{\frac{5}{4{a}^{2}}+\frac{5}{16{b}^{2}}=1}\\{\frac{1}{4{a}^{2}}+\frac{9}{16{b}^{2}}=1}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{{a}^{2}=\frac{5}{2}}\\{{b}^{2}=\frac{5}{8}}\end{array}\right.$£¬
¡àÍÖÔ²¦£µÄ·½³ÌΪ$\frac{{x}^{2}}{\frac{5}{2}}+\frac{{y}^{2}}{\frac{5}{8}}=1$    ¡­£¨4·Ö£©
ÉèC£¨m£¬n£©£¬ÔòBCµÄÖеãD£¨$\frac{2m-1}{4}$£¬$\frac{4n-3}{8}$£©£¬¡ßDÔÚÖ±ÏßOAÉÏ
ÓÉÒÑÖª£¬ÇóµÃÖ±ÏßOAµÄ·½³ÌΪx-2y=0£¬´Ó¶øm=2n-1£¬¢Ù
ÓÖµãCÔÚÍÖÔ²¦£ÉÏ£¬¹Ê2m2+8n2=5£¬¢Ú
ÓÉ¢Ù¢Ú½âµÃn=$\frac{3}{4}$£¨ÉáÈ¥£©»òn=-$\frac{1}{4}$£¬Ôòm=-$\frac{3}{2}$£¬
¡àµãCµÄ×ø±êΪ£¨-$\frac{3}{2}$£¬-$\frac{1}{4}$£©£»  ¡­£¨6·Ö£©
£¨¢ò£©ÉèP£¨x0£¬y0£©£¬M£¨2y1£¬y1£©£¬N£¨2y2£¬y2£©£¬
¡ßP£¬B£¬MÈýµã¹²Ïߣ¬¡à$\frac{{y}_{1}+\frac{3}{4}}{2{y}_{1}+\frac{1}{2}}$=$\frac{{y}_{0}+\frac{3}{4}}{{x}_{0}+\frac{1}{2}}$£¬y1=$\frac{3{x}_{0}-2{y}_{0}}{4£¨2{y}_{0}-{x}_{0}+1£©}$£¬
¡ßP£¬C£¬MÈýµã¹²Ïߣ¬¡à$\frac{{y}_{2}+\frac{1}{4}}{2{y}_{2}+\frac{3}{2}}$=$\frac{{y}_{0}+\frac{1}{4}}{{x}_{0}+\frac{3}{2}}$£¬y2=$\frac{{x}_{0}-6{y}_{0}}{4£¨2{y}_{0}-{x}_{0}-1£©}$£¬¡­£¨8·Ö£©
¡ßµãPÔÚÍÖÔ²¦£ÉÏ£¬
¡à2x02+8y02=5£¬x02=$\frac{5}{2}$-4y02£¬
¡ày1y2=$\frac{£¨3{x}_{0}-2{y}_{0}£©£¨{x}_{0}-6{y}_{0}£©}{16[£¨2{y}_{0}-{x}_{0}£©^{2}-1]}$=$\frac{3{x}_{0}^{2}-20{x}_{0}{y}_{0}+12{y}_{0}^{2}}{16£¨4{y}_{0}^{2}+{x}_{0}^{2}-4{x}_{0}{y}_{0}-1£©}$
=$\frac{3£¨\frac{5}{2}-4{y}_{0}^{2}£©-20{x}_{0}{y}_{0}+12{y}_{0}^{2}}{16£¨\frac{5}{2}-4{x}_{0}{y}_{0}-1£©}$=$\frac{5£¨\frac{3}{2}-4{x}_{0}{y}_{0}£©}{16£¨\frac{3}{2}-4{x}_{0}{y}_{0}£©}$=$\frac{5}{16}$£¬¡­£¨10·Ö£©
¡à|OM|•|ON|=$\sqrt{5}$Ø­y1Ø­•$\sqrt{5}$Ø­y2Ø­=5Ø­y1y2Ø­=$\frac{25}{16}$Ϊ¶¨Öµ£®
¡à|OM|•|ON|Ϊ¶¨Öµ $\frac{25}{16}$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬Öеã×ø±ê¹«Ê½µÄÓ¦Óã¬Ö±ÏßµÄбÂʹ«Ê½£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÉèÏòÁ¿$\overrightarrow{a}$=£¨sinx£¬$\sqrt{3}$cosx£©£¬$\overrightarrow{b}$=£¨-1£¬1£©£¬$\overrightarrow{c}$=£¨1£¬1£©£¬ÆäÖÐx¡Ê£¨0£¬¦Ð]£®
£¨1£©Èô£¨$\overrightarrow{a}$+$\overrightarrow{b}$£©¡Î$\overrightarrow{c}$£¬ÇóʵÊýxµÄÖµ£»
£¨2£©Èô$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$£¬Çóº¯ÊýsinxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©=ax£¨0£¼a£¼1£©£¬ÇÒf£¨1£©+f£¨-1£©=$\frac{10}{3}$£¬ÈôÊýÁÐ{f£¨x£©}£¨n¡ÊN*£©µÄǰnÏîºÍµÈÓÚ$\frac{40}{81}$£®Ôòn=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ÔÚÈýÀâ×¶P-ABCÖУ¬AC=BC=$\sqrt{2}$£¬¡ÏACB=90¡ã£¬AP=BP=AB£¬PC¡ÍAC£®
£¨1£©Çó¶þÃæ½ÇB-AP-CµÄÕýÇÐÖµ£»
2£©ÇóµãCµ½Æ½ÃæAPBµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=$\frac{lnx+£¨x-t£©^{2}}{x}$£¬Èô¶ÔÈÎÒâµÄx¡Ê[1£¬2]£¬f¡ä£¨x£©•x+f£¨x£©£¾0ºã³ÉÁ¢£¬ÔòʵÊýtµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬$\sqrt{2}$]B£®£¨-¡Þ£¬$\frac{3}{2}$£©C£®£¨-¡Þ£¬$\frac{9}{4}$]D£®[$\sqrt{2}$£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÔÚÕýÈýÀâ×¶S-ABCÖУ¬ÒìÃæÖ±ÏßSAÓëBCËù³É½ÇµÄ´óСΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}$B£®$\frac{¦Ð}{3}$C£®$\frac{¦Ð}{2}$D£®$\frac{2¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÊýÁÐ{an}Âú×ãa1+2a2+22a3+¡­+2n-1an=$\frac{n}{2}$£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=nan£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªx£¾0£¬y£¾0£¬x+2y+2xy=8£¬Ôòx+2yµÄ×îСֵΪ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÔڵȱÈÊýÁÐ{an}ÖУ¬ÒÑÖª¹«±Èq=$\frac{1}{2}$£¬S5=-$\frac{31}{4}$£¬Ôòa1=-4£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸