精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\frac{lnx+(x-t)^{2}}{x}$,若对任意的x∈[1,2],f′(x)•x+f(x)>0恒成立,则实数t的取值范围是(  )
A.(-∞,$\sqrt{2}$]B.(-∞,$\frac{3}{2}$)C.(-∞,$\frac{9}{4}$]D.[$\sqrt{2}$,+∞)

分析 对任意的x∈[1,2],f′(x)•x+f(x)>0恒成立?对任意的x∈[1,2],$\frac{2{x}^{2}-2tx+1}{x}>0$恒成立,
?对任意的x∈[1,2],2x2-2tx+1>0恒成立,?t<$\frac{2{x}^{2}+1}{2x}=x+\frac{1}{2x}=x+\frac{\frac{1}{2}}{x}$恒成立,求出x+$\frac{\frac{1}{2}}{x}$在[1,2]上的最小值即可.

解答 解:∵$f′(x)=\frac{{x}^{2}-lnx+1-{t}^{2}}{{x}^{2}}$
∴对任意的x∈[1,2],f′(x)•x+f(x)>0恒成立?对任意的x∈[1,2],$\frac{2{x}^{2}-2tx+1}{x}>0$恒成立,
?对任意的x∈[1,2],2x2-2tx+1>0恒成立,?t<$\frac{2{x}^{2}+1}{2x}=x+\frac{1}{2x}=x+\frac{\frac{1}{2}}{x}$恒成立,
又g(x)=x+$\frac{\frac{1}{2}}{x}$在[1,2]上单调递增,∴$g(x)_{min}=g(1)=\frac{3}{2}$,
∴t<$\frac{3}{2}$.
故选:B

点评 本题考查了导数的应用,恒成立问题的基本处理方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.当输入x=-$\frac{π}{6}$时,如图的程序运行的结果是(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C的对边分别为a,b,c,且${b^2}-{(a-c)^2}=(2-\sqrt{3})ac$.
(1)求角B的大小;
(2)若数列{an}是等差数列,且a1•cos2B=1,a2=4,求{$\frac{4}{{a}_{n}{a}_{n+1}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.圆O的直径为BC,点A是圆周上异于B,C的一点,且|AB|•|AC|=1,若点P是圆O所在平面内的一点,且$\overrightarrow{AP}=\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{9\overrightarrow{AC}}{|\overrightarrow{AC}|}$,则$\overrightarrow{PB}•\overrightarrow{PC}$的最大值为76.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,将圆O:x2+y2=4上每一个点的横坐标不变,纵坐标变为原来的$\frac{1}{2}$,得到曲线C.
(1)求曲线C的参数方程;
(2)以坐标原点O为极点,以x轴非负半轴为极轴建立极坐标系,在两坐标系中取相同的单位长度,射线θ=α(ρ≥0)与圆O和曲线C分别交于点A,B,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知椭圆Γ:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1 (a>b>0)经过不同的三点A($\frac{{\sqrt{5}}}{2}$,$\frac{{\sqrt{5}}}{4}$),B(-$\frac{1}{2}$,-$\frac{3}{4}$),C(C在第三象限),线段BC的中点在直线OA上.
(Ⅰ)求椭圆Γ的方程及点C的坐标;
(Ⅱ)设点P是椭圆Γ上的动点(异于点A、B、C)且直线PB、
PC分别交直线OA于M、N两点,问|OM|•|ON|是否为定值?
若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}的前n项和为Sn(Sn≠0),a1=$\frac{1}{2}$,且对任意正整数n,都有an+1+SnSn+1=0,则a1+a20=$\frac{1}{210}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{lnx+a}{x}$,a∈R.
(1)求函数f(x)的单调区间;
(2)设函数g(x)=(x-k)ex+k,k∈Z,e=2.71828…为自然对数的底数,当a=1时,若?x1∈(0,+∞),?x2∈(0,+∞),不等式5f(x1)+g(x2)>0成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.sin480°=(  )
A.$-\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案