精英家教网 > 高中数学 > 题目详情
16.在等比数列{an}中,已知公比q=$\frac{1}{2}$,S5=-$\frac{31}{4}$,则a1=-4.

分析 利用等比数列的前n项和公式直接求解.

解答 解:∵在等比数列{an}中,公比q=$\frac{1}{2}$,S5=-$\frac{31}{4}$,
∴${S}_{5}=\frac{{a}_{1}(1-{q}^{5})}{1-q}$=$\frac{{a}_{1}(1-\frac{1}{32})}{1-\frac{1}{2}}$=-$\frac{31}{4}$,
a1=-4.
故答案为:-4.

点评 本题考查等比数列的首项的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,已知椭圆Γ:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1 (a>b>0)经过不同的三点A($\frac{{\sqrt{5}}}{2}$,$\frac{{\sqrt{5}}}{4}$),B(-$\frac{1}{2}$,-$\frac{3}{4}$),C(C在第三象限),线段BC的中点在直线OA上.
(Ⅰ)求椭圆Γ的方程及点C的坐标;
(Ⅱ)设点P是椭圆Γ上的动点(异于点A、B、C)且直线PB、
PC分别交直线OA于M、N两点,问|OM|•|ON|是否为定值?
若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知某产品出厂前需要依次通过三道严格的审核程序,三道审核程序通过的概率依次为$\frac{9}{10}$,$\frac{8}{9}$,$\frac{7}{8}$,每道程序是相互独立的,且一旦审核不通过就停止审核,该产品只有三道程序都通过才能出厂销售
(Ⅰ)求审核过程中只通过两道程序的概率;
(Ⅱ)现有3件该产品进入审核,记这3件产品可以出厂销售的件数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某舰艇在A处测得一遇险渔船在北偏东45°距离A处10海里的C处,此时得知,该渔船正沿南偏东75°方向以每小时9海里的速度向一小岛靠近,舰艇时速为21海里,求舰艇追上渔船的最短时间(单位:小时)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.sin480°=(  )
A.$-\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.下列说法:
①分类变量A与B的随机变量K2越大,说明“A与B有关系”的可信度越大.
②以模型y=cekx去拟合一组数据时,为了求出回归方程,设z=lny,将其变换后得到线性方程z=0.3x+4,则c,k的值分别是e4和0.3.
③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y=a+bx中,b=1,$\overline{x}$=1,$\overline{y}$=3,
则a=1.正确的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.若X~N(5,1),则P(6<X<7)等于(  )
A.0.3413B.0.4772C.0.1359D.0.8185

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若关于x的方程x2-mx+m=0没有实数根,则实数m的取值范围是(0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an}满足:a1=1,$\frac{1}{{{a_{n+1}}}}=\frac{{{a_n}+1}}{a_n}$(n∈N*),则数列{an}的通项公式为(  )
A.${a_n}=\frac{1}{n}$B.${a_n}=\frac{1}{n-1}$C.${a_n}=\frac{n}{n+1}$D.${a_n}=\frac{1}{n+1}$

查看答案和解析>>

同步练习册答案