精英家教网 > 高中数学 > 题目详情
6.已知数列{an}满足:a1=1,$\frac{1}{{{a_{n+1}}}}=\frac{{{a_n}+1}}{a_n}$(n∈N*),则数列{an}的通项公式为(  )
A.${a_n}=\frac{1}{n}$B.${a_n}=\frac{1}{n-1}$C.${a_n}=\frac{n}{n+1}$D.${a_n}=\frac{1}{n+1}$

分析 数列{an}满足:a1=1,$\frac{1}{{{a_{n+1}}}}=\frac{{{a_n}+1}}{a_n}$(n∈N*),可得$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=1,利用等差数列的通项公式即可得出.

解答 解:数列{an}满足:a1=1,$\frac{1}{{{a_{n+1}}}}=\frac{{{a_n}+1}}{a_n}$(n∈N*),
∴$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=1,
∴数列{$\frac{1}{{a}_{n}}$}是等差数列,公差为1,首项为1.
∴$\frac{1}{{a}_{n}}$=1+(n-1)=n.
则数列{an}的通项公式为:an=$\frac{1}{n}$.
故选:A.

点评 本题考查了等差数列的通项公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在等比数列{an}中,已知公比q=$\frac{1}{2}$,S5=-$\frac{31}{4}$,则a1=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图是市儿童乐园里一块平行四边形草地ABCD,乐园管理处准备过线段AB上一点E设计一条直线EF(点F在边BC或CD上,不计路的宽度),将该草地分为面积之比为2:1的左、右两部分,分别种植不同的花卉.经测量得AB=18m,BC=10m,∠ABC=120°.设EB=x,EF=y(单位:m).
(1)当点F与C重合时,试确定点E的位置;
(2)求y关于x的函数关系式;
(3)请确定点E、F的位置,使直路EF长度最短.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知单位向量$\overrightarrow{a}$,$\overrightarrow{b}$,且$\overrightarrow{a}$$•\overrightarrow{b}$=-$\frac{1}{2}$
(Ⅰ)求|$\overrightarrow{a}$$+\overrightarrow{b}$|
(Ⅱ)$\overrightarrow{a}$与$\overrightarrow{b}$$-\overrightarrow{a}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,梯形ABEF中,AF∥BE,AB⊥AF,且AB=BC=AD=DF=2CE=2,沿DC将梯形DCFE折起,使得平面DCFE⊥平面ABCD.
(1)证明:AC∥平面BEF;
(2)求三棱锥D-BEF的体积;
(3)求直线AF与平面BDF所求的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线x+2y-3=0的斜率为(  )
A.2B.-2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.过点(2,2)且垂直于直线2x+y+6=0的直线方程为(  )
A.2x-y-2=0B.x-2y-2=0C.x-2y+2=0D.2x+y+2=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知曲线C1的方程为x2+y2=1,过平面上一点P1作C1的两条切线,切点分别为A1、B1,且满足∠A1P1B1=$\frac{π}{3}$,记P1的轨迹为C2,过一点P2作C2的两条切线,切点分别为A2,B2满足∠A2P2B2=$\frac{π}{3}$,记P2的轨迹为C3,按上述规律一直进行下去…,记an=|AnAn+1|max且Sn为数列{$\frac{1}{{a}_{n}}$}的前n项和,则满足|Sn-$\frac{2}{3}$|<$\frac{1}{100}$的最小的n是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,-1].
(1)求m的值;
(2)若a,b,c∈R,且$\frac{1}{{a}^{2}}$+$\frac{4}{{b}^{2}}$+$\frac{9}{{c}^{2}}$=m,求证:a2+b2+c2≥36.

查看答案和解析>>

同步练习册答案