7£®ÒÑÖªÇúÏßC1µÄ·½³ÌΪx2+y2=1£¬¹ýÆ½ÃæÉÏÒ»µãP1×÷C1µÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪA1¡¢B1£¬ÇÒÂú×ã¡ÏA1P1B1=$\frac{¦Ð}{3}$£¬¼ÇP1µÄ¹ì¼£ÎªC2£¬¹ýÒ»µãP2×÷C2µÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪA2£¬B2Âú×ã¡ÏA2P2B2=$\frac{¦Ð}{3}$£¬¼ÇP2µÄ¹ì¼£ÎªC3£¬°´ÉÏÊö¹æÂÉÒ»Ö±½øÐÐÏÂÈ¥¡­£¬¼Çan=|AnAn+1|maxÇÒSnΪÊýÁÐ{$\frac{1}{{a}_{n}}$}µÄǰnÏîºÍ£¬ÔòÂú×ã|Sn-$\frac{2}{3}$|£¼$\frac{1}{100}$µÄ×îСµÄnÊÇ£¨¡¡¡¡£©
A£®5B£®6C£®7D£®8

·ÖÎö ÉèP1£¨x£¬y£©£¬Ôò|OP1|=2|OA1|=2£¬¿ÉµÃ·½³ÌC2£ºx2+y2=4£®Í¬Àí¿ÉµÃP2µÄ·½³ÌC3Ϊ£ºx2+y2=16£®ÉèA1£¨cos¦È£¬sin¦È£©£¬A2£¨2cos¦Á£¬2sin¦Á£©£¬¿ÉµÃ|A1A2|=$\sqrt{5-4cos£¨¦Á-¦È£©}¡Ü3=1+2$£¬Í¬Àí¿ÉµÃ£ºan=|AnAn+1|max=2n-1+2n£®¿ÉµÃ$\frac{1}{{a}_{n}}=\frac{1}{3•{2}^{n-1}}$£®¿ÉµÃÊýÁÐ{$\frac{1}{{a}_{n}}$}µÄǰnÏîºÍSn£¬´úÈë|Sn-$\frac{2}{3}$|=$\frac{1}{3•{2}^{n-1}}$£¼$\frac{1}{100}$£¬ÓÉ´ËÄÜÇó³ön£®

½â´ð ½â£ºÉèP1£¨x£¬y£©£¬Ôò|OP1|=2|OA1|=2£¬
¿ÉµÃ·½³ÌC2£ºx2+y2=4£®
ͬÀí¿ÉµÃP2µÄ·½³ÌC3Ϊ£ºx2+y2=16£®
ÉèA1£¨cos¦È£¬sin¦È£©£¬A2£¨2cos¦Á£¬2sin¦Á£©
|A1A2|=$\sqrt{£¨cos¦È-2cos¦Á£©^{2}+£¨sin¦È-2sin¦Á£©^{2}}$
=$\sqrt{5-4cos£¨¦Á-¦È£©}$¡Ü3=1+2£¬
ͬÀí¿ÉµÃ£ºan=|AnAn+1|max=2n-1+2n£®
$\frac{1}{{a}_{n}}$=$\frac{1}{{2}^{n-1}+{2}^{n}}$=$\frac{1}{3•{2}^{n-1}}$£®
ÊýÁÐ{$\frac{1}{{a}_{n}}$}µÄǰnÏîºÍSn=$\frac{1}{3}$¡Á$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$=$\frac{1}{3}£¨1-\frac{1}{{2}^{n}}£©$£¬
ÔòÂú×ã|Sn-$\frac{2}{3}$|=$\frac{1}{3•{2}^{n-1}}$£¼$\frac{1}{100}$£¬½âµÃn¡Ý7£®
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éµÈ±ÈÊýÁеÄͨÏʽÓëÇóºÍ¹«Ê½£¬¿¼²éÊýÁеÝÍÆ¹«Ê½¡¢Á½µã¼ä¾àÀ빫ʽ¡¢Ö±ÏßÓëÔ²ÏàÇеÄÐÔÖÊ¡¢¹´¹É¶¨ÀíµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èô¹ØÓÚxµÄ·½³Ìx2-mx+m=0ûÓÐʵÊý¸ù£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨0£¬4£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªÊýÁÐ{an}Âú×㣺a1=1£¬$\frac{1}{{{a_{n+1}}}}=\frac{{{a_n}+1}}{a_n}$£¨n¡ÊN*£©£¬ÔòÊýÁÐ{an}µÄͨÏʽΪ£¨¡¡¡¡£©
A£®${a_n}=\frac{1}{n}$B£®${a_n}=\frac{1}{n-1}$C£®${a_n}=\frac{n}{n+1}$D£®${a_n}=\frac{1}{n+1}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÖ±Ïßl1¹ýµãA£¨2£¬1£©£¬Ö±Ïßl2£º2x-y-1=0£®
£¨¢ñ£©ÈôÖ±Ïßl1ÓëÖ±Ïßl2ƽÐУ¬ÇóÖ±Ïßl1µÄ·½³Ì£»
£¨¢ò£©ÈôÖ±Ïßl1ÓëyÖá¡¢Ö±Ïßl2·Ö±ð½»ÓÚµãM£¬N£¬|MN|=|AN|£¬ÇóÖ±Ïßl1µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®°ÑÏÂÁи÷½Ç¶È»¯³É»¡¶È£º
£¨1£©36¡ã£»£¨2£©-150¡ã£»£¨3£©1095¡ã£»£¨4£©1440¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÕýÏîÊýÁÐ{an}ÓëÕýÏîÊýÁÐ{bn}µÄǰnÏîºÍ·Ö±ðΪAnºÍBn£¬ÇÒ¶ÔÈÎÒân¡ÊN*£¬an+1-an=2£¨bn+1-bn£©ºã³ÉÁ¢£®
£¨1£©ÈôAn=$\frac{1}{2}$£¨an-1£©£¨an+2£©£¬n¡ÊN*£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Èôb1=1£¬ÇóBn£»
£¨3£©Èô¶ÔÈÎÒân¡ÊN*£¬ºãÓÐan=Bn¼°$\frac{{b}_{2}}{{a}_{1}{a}_{2}}$+$\frac{{b}_{3}}{{a}_{2}{a}_{3}}$+$\frac{{b}_{4}}{{a}_{3}{a}_{4}}$+¡­+$\frac{{b}_{n+1}}{{a}_{n}{a}_{n+1}}$£¼$\frac{1}{3}$³ÉÁ¢£¬ÇóʵÊýb1µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Éèa=3x2-x+2£¬b=2x2+x-1£¬ÔòaÓëbµÄ´óС¹ØÏµÎª£¨¡¡¡¡£©
A£®a£¾bB£®a=bC£®a£¼bD£®ÓëxÓйØ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Éèm=3${¡Ò}_{-1}^{1}$£¨x2+sinx£©dx£¬Ôò¶àÏîʽ£¨x+$\frac{1}{m\sqrt{x}}$£©6µÄ³£ÊýÏ¡¡¡¡£©
A£®-$\frac{5}{4}$B£®$\frac{5}{4}$C£®$\frac{20}{3}$D£®$\frac{15}{16}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Éè$\overrightarrow{e_1}£¬\overrightarrow{e_2}$ÊÇÁ½¸ö²»¹²ÏßµÄÏòÁ¿£¬ÒÑÖª$\overrightarrow{AB}=2\overrightarrow{e_1}+m\overrightarrow{e_2}£¬\overrightarrow{BC}=\overrightarrow{e_1}+3\overrightarrow{e_2}$£¬ÈôA£¬B£¬CÈýµã¹²Ïߣ¬ÔòʵÊým=6£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸