分析 (1)根据面积公式列方程求出BE;
(2)对F的位置进行讨论,利用余弦定理求出y关于x的解析式;
(3)分两种情况求出y的最小值,从而得出y的最小值,得出E,F的位置.
解答 解:(1)∵S△BCE=$\frac{1}{2}×BE×BC×sin∠ABC$,SABCD=2×$\frac{1}{2}×AB×BC×sin∠ABC$,
∴$\frac{{S}_{△BCE}}{{S}_{ABCD}}$=$\frac{BE}{2AB}$=$\frac{1}{3}$,
∴BE=$\frac{2}{3}$AB=12.即E为AB靠近A的三点分点.
(2)SABCD=18×10×sin120°=90$\sqrt{3}$,
当0≤x<12时,F在CD上,
∴SEBCF=$\frac{1}{2}$(x+CF)BCsin60°=$\frac{1}{3}×$90$\sqrt{3}$,解得CF=12-x,
∴y=$\sqrt{1{0}^{2}+(12-2x)^{2}-2×10×(12-2x)×cos60°}$=2$\sqrt{{x}^{2}-7x+31}$,
当12≤x≤18时,F在BC上,
∴S△BEF=$\frac{1}{2}•x•BF•sin120°$=$\frac{1}{3}×90\sqrt{3}$,解得BF=$\frac{120}{x}$,
∴y=$\sqrt{{x}^{2}+\frac{14400}{{x}^{2}}-2x•\frac{120}{x}•cos120°}$=$\sqrt{{x}^{2}+\frac{14400}{{x}^{2}}+120}$,
综上,y=$\left\{\begin{array}{l}{2\sqrt{{x}^{2}-7x+31},0≤x<12}\\{\sqrt{{x}^{2}+\frac{14400}{{x}^{2}}+120},12≤x≤18}\end{array}\right.$.
(3)当0≤x<12时,y=2$\sqrt{{x}^{2}-7x+31}$=2$\sqrt{(x-\frac{7}{2})^{2}+\frac{75}{4}}$≥5$\sqrt{3}$,
当12≤x≤18时,y=$\sqrt{{x}^{2}+\frac{14400}{{x}^{2}}+120}$>$\sqrt{360}$>5$\sqrt{3}$,
∴当x=$\frac{7}{2}$,CF=$\frac{17}{2}$时,直线EF最短,最短距离为5$\sqrt{3}$.
点评 本题考查了函数在实际问题中的应用及基本不等式与二次函数的性质应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.3413 | B. | 0.4772 | C. | 0.1359 | D. | 0.8185 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overline{x}$=5,s2>3 | B. | $\overline{x}$=5,s2<3 | C. | $\overline{x}$>5,s2<3 | D. | $\overline{x}$>5,s2>3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${a_n}=\frac{1}{n}$ | B. | ${a_n}=\frac{1}{n-1}$ | C. | ${a_n}=\frac{n}{n+1}$ | D. | ${a_n}=\frac{1}{n+1}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com