精英家教网 > 高中数学 > 题目详情
17.如图是市儿童乐园里一块平行四边形草地ABCD,乐园管理处准备过线段AB上一点E设计一条直线EF(点F在边BC或CD上,不计路的宽度),将该草地分为面积之比为2:1的左、右两部分,分别种植不同的花卉.经测量得AB=18m,BC=10m,∠ABC=120°.设EB=x,EF=y(单位:m).
(1)当点F与C重合时,试确定点E的位置;
(2)求y关于x的函数关系式;
(3)请确定点E、F的位置,使直路EF长度最短.

分析 (1)根据面积公式列方程求出BE;
(2)对F的位置进行讨论,利用余弦定理求出y关于x的解析式;
(3)分两种情况求出y的最小值,从而得出y的最小值,得出E,F的位置.

解答 解:(1)∵S△BCE=$\frac{1}{2}×BE×BC×sin∠ABC$,SABCD=2×$\frac{1}{2}×AB×BC×sin∠ABC$,
∴$\frac{{S}_{△BCE}}{{S}_{ABCD}}$=$\frac{BE}{2AB}$=$\frac{1}{3}$,
∴BE=$\frac{2}{3}$AB=12.即E为AB靠近A的三点分点.
(2)SABCD=18×10×sin120°=90$\sqrt{3}$,
当0≤x<12时,F在CD上,
∴SEBCF=$\frac{1}{2}$(x+CF)BCsin60°=$\frac{1}{3}×$90$\sqrt{3}$,解得CF=12-x,
∴y=$\sqrt{1{0}^{2}+(12-2x)^{2}-2×10×(12-2x)×cos60°}$=2$\sqrt{{x}^{2}-7x+31}$,
当12≤x≤18时,F在BC上,
∴S△BEF=$\frac{1}{2}•x•BF•sin120°$=$\frac{1}{3}×90\sqrt{3}$,解得BF=$\frac{120}{x}$,
∴y=$\sqrt{{x}^{2}+\frac{14400}{{x}^{2}}-2x•\frac{120}{x}•cos120°}$=$\sqrt{{x}^{2}+\frac{14400}{{x}^{2}}+120}$,
综上,y=$\left\{\begin{array}{l}{2\sqrt{{x}^{2}-7x+31},0≤x<12}\\{\sqrt{{x}^{2}+\frac{14400}{{x}^{2}}+120},12≤x≤18}\end{array}\right.$.
(3)当0≤x<12时,y=2$\sqrt{{x}^{2}-7x+31}$=2$\sqrt{(x-\frac{7}{2})^{2}+\frac{75}{4}}$≥5$\sqrt{3}$,
当12≤x≤18时,y=$\sqrt{{x}^{2}+\frac{14400}{{x}^{2}}+120}$>$\sqrt{360}$>5$\sqrt{3}$,
∴当x=$\frac{7}{2}$,CF=$\frac{17}{2}$时,直线EF最短,最短距离为5$\sqrt{3}$.

点评 本题考查了函数在实际问题中的应用及基本不等式与二次函数的性质应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知某产品出厂前需要依次通过三道严格的审核程序,三道审核程序通过的概率依次为$\frac{9}{10}$,$\frac{8}{9}$,$\frac{7}{8}$,每道程序是相互独立的,且一旦审核不通过就停止审核,该产品只有三道程序都通过才能出厂销售
(Ⅰ)求审核过程中只通过两道程序的概率;
(Ⅱ)现有3件该产品进入审核,记这3件产品可以出厂销售的件数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.若X~N(5,1),则P(6<X<7)等于(  )
A.0.3413B.0.4772C.0.1359D.0.8185

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若关于x的方程x2-mx+m=0没有实数根,则实数m的取值范围是(0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知某8个数据的平均数为5,方差为3,现又加入一个新数据5,此时这9个数的平均数为$\overline{x}$,方差为s2,则(  )
A.$\overline{x}$=5,s2>3B.$\overline{x}$=5,s2<3C.$\overline{x}$>5,s2<3D.$\overline{x}$>5,s2>3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知命题p:指数函数f(x)=(m+1)x是减函数;命题q:?x∈R,x2+x+m<0,若“p或q”是真命题,则实数m的取值范围是$(-∞,\frac{1}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知{an}是等差数列,其中a1=-2,a5=10,则公差d=(  )
A.1B.-3C.-2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an}满足:a1=1,$\frac{1}{{{a_{n+1}}}}=\frac{{{a_n}+1}}{a_n}$(n∈N*),则数列{an}的通项公式为(  )
A.${a_n}=\frac{1}{n}$B.${a_n}=\frac{1}{n-1}$C.${a_n}=\frac{n}{n+1}$D.${a_n}=\frac{1}{n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设a=3x2-x+2,b=2x2+x-1,则a与b的大小关系为(  )
A.a>bB.a=bC.a<bD.与x有关

查看答案和解析>>

同步练习册答案