精英家教网 > 高中数学 > 题目详情
14.如图,在三棱锥P-ABC中,AC=BC=$\sqrt{2}$,∠ACB=90°,AP=BP=AB,PC⊥AC.
(1)求二面角B-AP-C的正切值;
2)求点C到平面APB的距离.

分析 (1)推导出PC⊥平面ABC,BC⊥平面PAC,BC⊥AP,设点E为棱PA的中点,连结BE,CE,则BE⊥AP,再推导出EC⊥AP,从而∠BEC是二面角B-AP-C的平面角,由此能求出二面角B-AP-C的正切值.
(2)以C为原点,CB为x轴,CA为y轴,CP为z轴,建立空间直角坐标系,利用向量法能求出点C到平面APB的距离.

解答 解:(1)∵AC=BC=$\sqrt{2}$,AP=BP,PC=PC,
∴△APC≌△BPC,
又PC⊥AC,∴PC⊥BC
又∵AC∩BC=C,AC,BC?平面ABC,
∴PC⊥平面ABC,
∵PC⊥BC,BC⊥AC,PC∩AC=C,PC,AC?平面PAC
∴BC⊥平面PAC.
又∵AP?平面PAC,∴BC⊥AP,
设点E为棱PA的中点,连结BE,CE,
∵BP=AB,点E为棱PA中点,∴BE⊥AP.
又∵BC∩BE=B,BC,BE?平面BEC,∴PA⊥平面BEC,
∵EC?平面BEC,∴EC⊥AP,∴∠BEC是二面角B-AP-C的平面角,
AB=AP=AP=$\sqrt{2+2}$=2,在Rt△BCE中,BC=$\sqrt{2}$,BE=$\sqrt{4-1}$=$\sqrt{3}$,
∴tan∠BEC=$\frac{BC}{EC}$=$\frac{\sqrt{2}}{\sqrt{3}}$=$\frac{\sqrt{6}}{3}$.
∴二面角B-AP-C的正切值为$\frac{\sqrt{6}}{3}$.
(2)以C为原点,CB为x轴,CA为y轴,CP为z轴,建立空间直角坐标系,
C(0,0,0),A(0,$\sqrt{2}$,0),B($\sqrt{2},0,0$),P(0,0,$\sqrt{2}$),
$\overrightarrow{PA}$=(0,$\sqrt{2},-\sqrt{2}$),$\overrightarrow{PB}$=($\sqrt{2},0,-\sqrt{2}$),$\overrightarrow{CP}$=(0,0,$\sqrt{2}$),
设平面PAB的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PA}=\sqrt{2}y-\sqrt{2}z=0}\\{\overrightarrow{n}•\overrightarrow{PB}=\sqrt{2}x-\sqrt{2}z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,1,1),
∴点C到平面APB的距离d=$\frac{|\overrightarrow{CP}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{\sqrt{2}}{\sqrt{3}}$=$\frac{\sqrt{6}}{3}$.

点评 本题考查的知识点是二面角的平面角及求法,考查点到平面的距离的求法,考查直线与平面垂直的判定及性质,熟练掌握空间线面垂直与线线垂直之间的转化及理解二面角的平面角的概念是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x3+ax2+1(a∈R).
(1)当a>0时,求函数f(x)的极值;
(2)若f(x)在区间[1,2]上单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某地区数学考试的成绩X服从正态分布X~N(μ,σ2),正态分布密度函数为$f(x)=\frac{1}{{\sqrt{2π}σ}}{e^{-\frac{{{{(x-σ)}^2}}}{{2{x^2}}}}}$,x∈(-∞,+∞),其密度曲线如图所示,则成绩X位于区间(86,94]的概率是0.0215.(结果保留3为有效数字)本题用到参考数据如下:P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知F1,F2分别是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,A,B分别是椭圆C的左、右顶点,$\overrightarrow{A{F_2}}=(5+2\sqrt{6})\overrightarrow{{F_2}B}$,且OF2(其中O为坐标原点)的中点坐标为$(\frac{{\sqrt{30}}}{6},0)$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知动直线y=k(x+1)与椭圆C相交于P,Q两点,已知点$M(-\frac{7}{3},0)$,求证:$\overrightarrow{MP}•\overrightarrow{MQ}$是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.圆O的直径为BC,点A是圆周上异于B,C的一点,且|AB|•|AC|=1,若点P是圆O所在平面内的一点,且$\overrightarrow{AP}=\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{9\overrightarrow{AC}}{|\overrightarrow{AC}|}$,则$\overrightarrow{PB}•\overrightarrow{PC}$的最大值为76.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在x轴上与点A (-4,1,7)和点B(3,5,-2)等距离的点的坐标为(  )
A.(-2,0,0)B.(-3,0,0)C.(3,0,0)D.(2,0,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知椭圆Γ:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1 (a>b>0)经过不同的三点A($\frac{{\sqrt{5}}}{2}$,$\frac{{\sqrt{5}}}{4}$),B(-$\frac{1}{2}$,-$\frac{3}{4}$),C(C在第三象限),线段BC的中点在直线OA上.
(Ⅰ)求椭圆Γ的方程及点C的坐标;
(Ⅱ)设点P是椭圆Γ上的动点(异于点A、B、C)且直线PB、
PC分别交直线OA于M、N两点,问|OM|•|ON|是否为定值?
若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an},{bn}的通项公式分别是an=(-1)n+2016•a,bn=2+$\frac{{{{({-1})}^{n+2017}}}}{n}$,若an<bn,对任意n∈N+恒成立,则实数a的取值范围是$[{-2,\frac{3}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某舰艇在A处测得一遇险渔船在北偏东45°距离A处10海里的C处,此时得知,该渔船正沿南偏东75°方向以每小时9海里的速度向一小岛靠近,舰艇时速为21海里,求舰艇追上渔船的最短时间(单位:小时)

查看答案和解析>>

同步练习册答案