精英家教网 > 高中数学 > 题目详情
8.设函数f(x)=-$\frac{\sqrt{3}}{2}$sinx$-\frac{1}{2}$cosx+1
(1)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)若x∈[0,$\frac{π}{2}$],且f(x)=$\frac{1}{3}$,求cosx的值.

分析 (1)利用两角和的正弦公式化简函数f(x)的解析式,再利用正弦函数的周期性和单调性,求得函数f(x)的最小正周期和单调递增区间.
(Ⅱ)若x∈[0,$\frac{π}{2}$],利用同角三角函数的基本关系、两角差的余弦公式,求得cosx的值.

解答 解:(1)函数f(x)=-$\frac{\sqrt{3}}{2}$sinx$-\frac{1}{2}$cosx+1=-sin(x+$\frac{π}{6}$)+1,故该函数的最小正周期为2π,
令2kπ+$\frac{π}{2}$≤x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,求得2kπ+$\frac{π}{3}$≤x≤2kπ+$\frac{4π}{3}$,可得函数的增区间为[2kπ+$\frac{π}{3}$,2kπ+$\frac{4π}{3}$],k∈Z.
(Ⅱ)若x∈[0,$\frac{π}{2}$],则x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{2π}{3}$],又f(x)=$\frac{1}{3}$,即-sin(x+$\frac{π}{6}$)+1=$\frac{1}{3}$,即sin(x+$\frac{π}{6}$)=$\frac{2}{3}$,
∴cos(x+$\frac{π}{6}$)=±$\sqrt{{1-sin}^{2}(x+\frac{π}{6})}$=±$\frac{\sqrt{5}}{3}$.
若cos(x+$\frac{π}{6}$)=-$\frac{\sqrt{5}}{3}$,则cosx=cos[(x+$\frac{π}{6}$)-$\frac{π}{6}$]=cos(x+$\frac{π}{6}$) cos$\frac{π}{6}$+sin(x+$\frac{π}{6}$) sin$\frac{π}{6}$=-$\frac{\sqrt{5}}{3}$•$\frac{\sqrt{3}}{2}$+$\frac{2}{3}•\frac{1}{2}$=$\frac{2-\sqrt{15}}{6}$<0,不合题意,舍去.
若cos(x+$\frac{π}{6}$)=$\frac{\sqrt{5}}{3}$,则cosx=cos[(x+$\frac{π}{6}$)-$\frac{π}{6}$]=cos(x+$\frac{π}{6}$) cos$\frac{π}{6}$+sin(x+$\frac{π}{6}$) sin$\frac{π}{6}$=$\frac{\sqrt{5}}{3}$•$\frac{\sqrt{3}}{2}$+$\frac{2}{3}•\frac{1}{2}$=$\frac{2+\sqrt{15}}{6}$.
综上可得,cosx=$\frac{2+\sqrt{15}}{6}$.

点评 本题主要考查两角和差的三角公式,正弦函数的周期性和单调性,同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知{an}为等差数列,且a1+a3=8,a2+a4=12.
(1)求{an}的通项公式;
(2)设${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{2}$,抛物线y2=2px(p>0)的准线与双曲线C的渐近线交于A,B点,△OAB(O为坐标原点)的面积为4,则抛物线的方程为(  )
A.y2=4xB.y2=6xC.y2=8xD.y2=16x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知正方形ABCD的边长为1,$\overrightarrow{AB}$=a,$\overrightarrow{BC}$=b,则a+b的模等于(  )
A.1B.2C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知x>0,y>0,x+2y=1,若不等式$\frac{2}{x}$$+\frac{1}{y}$>m2+2m成立,则实数m的取值范围是(  )
A.m≥4或m≤-2B.m≥2或m≤-4C.-2<m<4D.-4<m<2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线l过点P(2,3),且与两条坐标轴在第一象限所围成的三角形的面积为12,则直线l的方程为3x+2y-12=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若M={1,2},N={2,3},则M∩N=(  )
A.{2}B.{1,2,3}C.{1,3}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数中,既在(-∞,0)∪(0,+∞)上是偶函数,又在(-∞,0)上单调递减的是(  )
A.y=-x2B.y=x-1C.y=-exD.y=ln|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若$sin(α+β)=\frac{1}{5}$,$sin(α-β)=\frac{3}{5}$,则$\frac{tanα}{tanβ}$=-2.

查看答案和解析>>

同步练习册答案