精英家教网 > 高中数学 > 题目详情
13.已知直线l过点P(2,3),且与两条坐标轴在第一象限所围成的三角形的面积为12,则直线l的方程为3x+2y-12=0.

分析 写出直线的截距式方程,根据要求条件参数的值,得到本题结论.

解答 解:设l在x轴、y轴上的截距分别为a,b(a>0,b>0),
则直线l的方程为$\frac{x}{a}$+$\frac{y}{b}$=1
∵P(2,3)在直线l上,
∴$\frac{2}{a}$+$\frac{3}{b}$=1.
又由l与两条坐标轴在第一象限所围成的三角形面积为12,
可得ab=24,
∴a=4,b=6,
∴直线l的方程为$\frac{x}{4}$+$\frac{y}{6}$=1,即3x+2y-12=0,
故答案为:3x+2y-12=0.

点评 本题考查了几种形式的直线方程,本题难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.从5男3女共8名学生中选出4人组成志愿者服务队,则服务队中至少有1名女生的不同选法共有65种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),l交椭圆于A、B两个不同点.
(1)求椭圆的标准方程以及m的取值范围;
(2)求证直线MA,MB与x轴始终围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将函数y=2cos(x-$\frac{π}{3}$)的图象上所有的点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),得到函数y=g(x)的图象,则函数y=g(x)的图象(  )
A.关于点(-$\frac{π}{6}$,0)对称B.关于点($\frac{5π}{12}$,0)对称
C.关于直线x=-$\frac{π}{6}$对称D.关于直线x=$\frac{5π}{12}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=-$\frac{\sqrt{3}}{2}$sinx$-\frac{1}{2}$cosx+1
(1)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)若x∈[0,$\frac{π}{2}$],且f(x)=$\frac{1}{3}$,求cosx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设△ABC的内角A,B,C的对边分别为a,b,c,且bcosA=$\sqrt{3}$asinB.
(1)求角A的大小;
(2)若a=1,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知在($\frac{x}{2}$$-\frac{1}{\root{5}{x}}$)n的展开式中,第6项为常数项,则n=(  )
A.9B.8C.7D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+5,x≥0}\\{x+5,x<0}\end{array}\right.$.
(1)求f(f(-2))的值;
(2)解不等式f(x)>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\overrightarrow{a}$=(cosωx,sinωx),$\overrightarrow{b}$=(2cosωx+sinωx,cosωx),x∈R,ω>0,记$f(x)=\overrightarrow a•\overrightarrow b$,且该函数的最小正周期是$\frac{π}{4}$.
(1)求ω的值;
(2)求函数f(x)的最大值,并且求使f(x)取得最大值的x的集合.

查看答案和解析>>

同步练习册答案