分析 (1)根据题意,将M点代入即可求得a和b的值,即可求得椭圆方程,求得直线l的方程,代入椭圆方程,由△>0即可求得m的取值范围;
(2)设直线MA、MB的斜率分别为k1,k2,只需证明k1+k2=0即可,根据直线的斜率公式及韦达定理即可求得答案.
解答 解:(1)设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),且a=2b,
椭圆经过点M(2,1),则$\frac{4}{{a}^{2}}+\frac{1}{{b}^{2}}=1$,解得:a=2$\sqrt{2}$,b=$\sqrt{2}$,
∴椭圆方程$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1$;…(3分)
∵直线l平行于OM,且在y轴上的截距为m 又kOM=$\frac{1}{2}$,
∴l的方程为:y=$\frac{1}{2}$x+m,
由$\left\{\begin{array}{l}{y=\frac{1}{2}x+m}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,整理得:x2+2mx+2m2-4=0,…(4分)
∵直线l与椭圆交于A、B两个不同点,△=(2m)2-4(2m2-4)>0,解得:-2<m<0或0<m<2,
∴m的取值范围是(-2,0)∪(0,2);…(6分)
(2)证明:设直线MA、MB的斜率分别为k1,k2,
要证直线MA,MB与x轴始终围成一个等腰三角形.只需证明k1+k2=0.
设A(x1,y1),B(x2,y2),l的方程为:y=$\frac{1}{2}$x+m,则k1=$\frac{{y}_{1}-1}{{x}_{1}-2}$,k2=$\frac{{y}_{2}-1}{{x}_{2}-2}$.
由$\left\{\begin{array}{l}{y=\frac{1}{2}x+m}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,整理得:x2+2mx+2m2-4=0
∴x1+x2=-2m,x1x2=2m2-4,
而k1+k2=$\frac{{y}_{1}-1}{{x}_{1}-2}$+$\frac{{y}_{2}-1}{{x}_{2}-2}$=$\frac{({y}_{1}-1)({x}_{2}-2)+({y}_{2}-1)({x}_{1}-2)}{({x}_{1}-2)({x}_{2}-2)}$,
其分子=($\frac{1}{2}$x1+m-1)(x2-2)+($\frac{1}{2}$x2+m-1)(x1-2)
=x1x2+(m-2)(x1+x2)-4(m-1)=2m2-4-2m(m-2)-4m+4=0,
∴k1+k2=0.
故直线MA、MB与x轴始终围成一个等腰三角形.
点评 本题考查了椭圆的标准方程及其性质、直线与椭圆的位置关系,考查韦达定理、斜率计算公式、等腰三角形的性质,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y2=4x | B. | y2=6x | C. | y2=8x | D. | y2=16x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| ξ | 1 | 2 | 3 |
| P | $\frac{1}{4}$ | 1-$\frac{3}{2}a$ | 2a2 |
| A. | -$\frac{1}{2}$或-$\frac{1}{4}$ | B. | $\frac{1}{2}$或$\frac{1}{4}$ | C. | -$\frac{1}{2}$或$\frac{1}{4}$ | D. | $\frac{1}{2}$或-$\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com