精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=ex和函数g(x)=kx+m(k、m为实数,e为自然对数的底数,e≈2.71828).
(1)求函数h(x)=f(x)-g(x)的单调区间;
(2)当k=2,m=1时,判断方程f(x)=g(x)的实数根的个数并证明;
(3)已知m≠1,不等式(m-1)[f(x)-g(x)]≤0对任意实数x恒成立,求km的最大值.

分析 (1)求出h′(x)=ex-k,(x∈R),分以下两种情况讨论:①当k≤0,②当k>0,
(2)当k=2,m=1时,方程f(x)=g(x)即为h(x)=ex-2x-1=0,结合(1)及图象即可判定.
(3)设h(x)=f(x)-g(x),分①当m>1,②当m<1,分别求解

解答 解:(1)h′(x)=ex-k,(x∈R),
①当k≤0时,h′(x)>0恒成立,h(x)的单调递增区间为(-∞,+∞),无单调递减区间;
②当k>0时,由h′(x)>0得x>lnk,由h′(x)<0得x<lnk,
故h(x)的单调递减区间为(-∞,lnk),单调递增区间为(lnk,+∞).
(2)当k=2,m=1时,方程f(x)=g(x)即为h(x)=ex-2x-1=0,
由(1)知h(x)在(-∞,ln2)上递减,而h(0)=0,故h(x)在(-∞,ln2)上有且仅有1个零点,
由(1)知h(x)在[ln2,+∞)上递增,而h(1)=e-3<0,h(2)=e2-5>0,且h(x)的图象在[1,2]上是连续不间断的,
故h(x)在[1,2]上有且仅有1个零点,所以h(x)在[ln2,+∞)上也有且仅有1个零点,
综上,方程f(x)=g(x)有且仅有两个实数根.
(3)设h(x)=f(x)-g(x),
①当m>1时,f(x)-g(x)≤0恒成立,则h(x)≤0恒成立,
而h(-$\frac{m}{k}$)=e${\;}^{-\frac{m}{k}}$>0,与h(x)≤0恒成立矛盾,故m>1不合题意;
②当m<1时,f(x)-g(x)≥0,恒成立,则h(x)≥0恒成立,
1°当k=0时,由h(x)=ex-m≥0恒成立可得m∈(-∞,0],km=0; 
2°当k<0时,h($\frac{1-m}{k}$)=e${\;}^{\frac{1-m}{k}}$-1,而$\frac{1-m}{k}<0$,故e${\;}^{\frac{1-m}{k}}$<1,
故h($\frac{1-m}{k}$)<0,与h(x)≥0恒成立矛盾,故k<0不合题意;
3°当k>0时,由(1)可知[h(x)]min=h(lnk)=k-klnk-m,而h(x)≥0恒成立,
故k-klnk-m≥0,得m≤k-klnk,故km≤k(k-klnk),
记φ(k)=k(k-klnk),(k>0),
则φ′(k)=k(1-2lnk),由φ′(k)>0得0$<k<\sqrt{e}$,由φ′(k)<0得k>$\sqrt{e}$,
故φ(k)在(0,$\sqrt{e}$)上单调递增,在($\sqrt{e}$,+∞)上单调递减,
∴φ(k)max=φ($\sqrt{e}$)=$\frac{e}{2}$,∴km≤$\frac{e}{2}$,当且仅当k=$\sqrt{e}$,m=$\frac{\sqrt{e}}{2}$时取等号;
综上①②两种情况得km的最大值为$\frac{e}{2}$.

点评 本题考查了导数的综合应用、方程的根的个数判断、恒成立问题,考查了函数与方程思想、转化思想,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系xOy中,已知圆C:(x-a)2+(y-a+2)2=1,点A(0,-3),若圆C上存在点M,满足|AM|=2|MO|,则实数a的取值范围是[0,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.sin 20°cos 10°+sin 10°sin 70°的值是(  )
A.$\frac{1}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.从5男3女共8名学生中选出4人组成志愿者服务队,则服务队中至少有1名女生的不同选法共有65种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=x3,则不等式f(2x)+f(x-1)<0的解集是(-∞,$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.数列{an}中,若an=$\left\{\begin{array}{l}{2n-1,n为奇数}\\{{2}^{n},n为偶数}\end{array}\right.$,则其前6项和为99.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an+1-2an}是公比为2的等比数列,其中a1=1,a2=4.
(1)证明:数列{$\frac{{a}_{n}}{{2}^{n}}$}是等差数列;
(2)求数列{an}的前n项和Sn
(3)记Cn=$\frac{2{a}_{n}-2n}{n}$(n≥2),证明:$\frac{1}{2}-$($\frac{1}{2}$)n<$\frac{1}{{c}_{2}}+\frac{1}{{c}_{3}}$+…+$\frac{1}{{c}_{n}}$≤1-($\frac{1}{2}$)n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),l交椭圆于A、B两个不同点.
(1)求椭圆的标准方程以及m的取值范围;
(2)求证直线MA,MB与x轴始终围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知在($\frac{x}{2}$$-\frac{1}{\root{5}{x}}$)n的展开式中,第6项为常数项,则n=(  )
A.9B.8C.7D.6

查看答案和解析>>

同步练习册答案