精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=x3,则不等式f(2x)+f(x-1)<0的解集是(-∞,$\frac{1}{3}$).

分析 根据题意,由函数的解析式分析可得f(x)为奇函数且在R上递增,则不等式f(2x)+f(x-1)<0可以转化为2x<1-x,解可得x的取值范围,即可得答案.

解答 解:根据题意,函数f(x)=x3,f(-x)=(-x)3=-x3
即有f(-x)=-f(x),为奇函数;
f(x)=x3,其导数f′(x)=3x2≥0,为增函数;
则f(2x)+f(x-1)<0⇒f(2x)<-f(x-1)⇒f(2x)<f(1-x)⇒2x<1-x,
解可得x<$\frac{1}{3}$,
即不等式f(2x)+f(x-1)<0的解集为(-∞,$\frac{1}{3}$);
故答案为:(-∞,$\frac{1}{3}$).

点评 本题考查函数的奇偶性与单调性的综合应用,注意分析函数的奇偶性与单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.小明家里有两双不同的拖鞋,求停电时他摸黑任穿2只恰好成双的概率(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知F1,F2是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦点,过F2作双曲线一条渐近线的垂线,垂足为点A,交另一条渐近线于点B,且$\overrightarrow{A{F_2}}=\frac{1}{3}\overrightarrow{{F_2}B}$,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{6}}}{2}$B.$\frac{{\sqrt{5}}}{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知{an}为等差数列,且a1+a3=8,a2+a4=12.
(1)求{an}的通项公式;
(2)设${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.现有一只不透明的袋子里面装有6个小球,其中3个为红球,3个为黑球,这些小球除颜色外无任何差异,现从袋中一次性地随机摸出2个小球.
(1)求这两个小球都是红球的概率;
(2)记摸出的小球中红球的个数为X,求随机变量X的概率分布及其均值E(X ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex和函数g(x)=kx+m(k、m为实数,e为自然对数的底数,e≈2.71828).
(1)求函数h(x)=f(x)-g(x)的单调区间;
(2)当k=2,m=1时,判断方程f(x)=g(x)的实数根的个数并证明;
(3)已知m≠1,不等式(m-1)[f(x)-g(x)]≤0对任意实数x恒成立,求km的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.为响应国家治理环境污染的号召,增强学生的环保意识,宿州市某中学举行了一次环保知识竞赛,共有900名学生参加了这次竞赛,为了解本次竞赛的成绩情况,从中抽取了l00学生的成绩进行统计,成绩频率分布直方图如图所示.估计这次测试中成绩的众数为75;平均数为72;中位数为73.(各组平均数取中值计算,保留整数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{2}$,抛物线y2=2px(p>0)的准线与双曲线C的渐近线交于A,B点,△OAB(O为坐标原点)的面积为4,则抛物线的方程为(  )
A.y2=4xB.y2=6xC.y2=8xD.y2=16x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若M={1,2},N={2,3},则M∩N=(  )
A.{2}B.{1,2,3}C.{1,3}D.{1}

查看答案和解析>>

同步练习册答案