精英家教网 > 高中数学 > 题目详情
20.数列{an}中,若an=$\left\{\begin{array}{l}{2n-1,n为奇数}\\{{2}^{n},n为偶数}\end{array}\right.$,则其前6项和为99.

分析 由题意可得其前6项和为(a1+a3+a5)+(a2+a4+a6),计算即可得到所求和.

解答 解:an=$\left\{\begin{array}{l}{2n-1,n为奇数}\\{{2}^{n},n为偶数}\end{array}\right.$,
可得其前6项和为(a1+a3+a5)+(a2+a4+a6
=(1+5+9)+(4+16+64)
=15+84=99.
故答案为:99.

点评 本题考查数列的求和:分组求和,考查等差数列和等比数列的求和公式,以及运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知一次函数f(x)的图象关于直线x-y=0对称的图象为C,且f(f(1))=-1,若点$({n,\frac{{{a_{n+1}}}}{a_n}})({n∈{N^*}})$在曲线C上,并有${a_1}=1,\frac{{{a_{n+1}}}}{a_n}-\frac{a_n}{{{a_{n-1}}}}=1({n≥2})$.
(1)求f(x)的解析式及曲线C的方程; 
(2)求数列{an}的通项公式;
(3)设${S_n}=\frac{a_1}{3!}+\frac{a_2}{4!}+\frac{a_3}{5!}+…+\frac{a_n}{{({n+2})!}}$,求$\lim_{n→∞}{S_n}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-$\frac{{{{(x-1)}^2}}}{2}$,g(x)=x-1.
(1)求函数f(x)的单调递增区间;
(2)若存在x0>1,当x∈(1,x0)时,恒有f(x)>mg(x),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知命题p:“?n∈N*,使得 n2<2n”,则命题¬p的真假为假.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex和函数g(x)=kx+m(k、m为实数,e为自然对数的底数,e≈2.71828).
(1)求函数h(x)=f(x)-g(x)的单调区间;
(2)当k=2,m=1时,判断方程f(x)=g(x)的实数根的个数并证明;
(3)已知m≠1,不等式(m-1)[f(x)-g(x)]≤0对任意实数x恒成立,求km的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.宿州某中学N名教师参加“低碳节能你我他”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50),得到的频率分布直方图如图所示.
下表是年龄的频数分布表:
区间[25,30)[30,35)[35,40)[40,45)[45,50]
人数25mp7525
(1)求正整数m,p,N的值;
(2)用分层抽样的方法,从第1、3、5组抽取6人,则第1、3、5组各抽取多少人?
(3)在(2)的条件下,从这6人中随机抽取2人参加学校之间的宣传交流活动,求恰有1人在第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.从集合A={1,2,3,…,2n+1}中,任取m(m≤2n+1,m,n∈N*)个元素构成集合Am,若Am的所有元素之和为偶数,则称Am为A的偶子集,其个数记为f(m);若Am的所有元素之和为偶数,则称Am为A的奇子集,其个数记为g(m),令F(m)=f(m)-g(m)
(1)当n=3时,求F(1),F(2),F(3)的值;
(2)求F(m).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知随机变量ξ的分布如下:
ξ123
P$\frac{1}{4}$1-$\frac{3}{2}a$2a2
则实数a的值为(  )
A.-$\frac{1}{2}$或-$\frac{1}{4}$B.$\frac{1}{2}$或$\frac{1}{4}$C.-$\frac{1}{2}$或$\frac{1}{4}$D.$\frac{1}{2}$或-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设i为虚数单位,复数z满足|z|-$\overline{z}$=2+4i($\overline{z}$为z的共轭复数),则z=3+4i.

查看答案和解析>>

同步练习册答案