精英家教网 > 高中数学 > 题目详情
5.在平面直角坐标系xOy中,已知圆C:(x-a)2+(y-a+2)2=1,点A(0,-3),若圆C上存在点M,满足|AM|=2|MO|,则实数a的取值范围是[0,3].

分析 设点M(x,y),由题意得x2+(y-2)2+x2+y2=10,若圆C上存在点M满足MA2+MO2=10也就等价于圆E与圆C有公共点,由此能求出实数a的取值范围.

解答 解:设点M(x,y),由题意得点A(0,2),O(0,0)及MA2+MO2=10,
即x2+(y-2)2+x2+y2=10,整理得x2+(y-1)2=4,
即点M在圆E:x2+(y-1)2=4上.
若圆C上存在点M满足MA2+MO2=10也就等价于圆E与圆C有公共点,
所以|2-1|≤CE≤2+1,
即|2-1|≤$\sqrt{{a}^{2}+(a-3)^{2}}$≤2+1,
整理得1≤2a2-6a+9≤9,解得0≤a≤3,
即实数a的取值范围是[0,3].
故答案为:[0,3].

点评 本题若将题目条件“圆C上存在点M满足MA2+MO2=10”改成“圆C上存在点M满足MA+MO=10”或改成“圆C上存在点M满足|MA-MO|=1”,考生多数能想到应该先求出点M满足的曲线方程再求解,而对于本题的条件“MA2+MO2=10”多数考生是不知道或不敢走求点M满足的曲线方程的这条路,最终导致思路中断而失分,这也就提醒考生在复习备考的过程中要加大创新思维能力的训练,如此才能提升数学思维层次,打破解题瓶颈.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax+x2-xlna(a>0,a≠1).
(1)求函数f(x)的单调区间;
(2)若函数f(x)满足:
①对任意的m1,m2,m1≠m2,当f(m1)=f(m2)时,有m1+m2<0成立;
②对?x1,x2∈[-1,1],|f(x1)-f(x2)|≤e-1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={x|0<ax+1≤5(a>0)},B={x|-$\frac{1}{2}$<x≤2}.
(1)若A=B,求实数a的值;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点与抛物线y2=4x的焦点F重合,且椭圆的离心率是$\frac{1}{2}$,如图所示.
(1)求椭圆的标准方程;
(2)抛物线的准线与椭圆在第二象限相交于点A,过点A作抛物线的切线l,l与椭圆的另一个交点为B,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.小明家里有两双不同的拖鞋,求停电时他摸黑任穿2只恰好成双的概率(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知一次函数f(x)的图象关于直线x-y=0对称的图象为C,且f(f(1))=-1,若点$({n,\frac{{{a_{n+1}}}}{a_n}})({n∈{N^*}})$在曲线C上,并有${a_1}=1,\frac{{{a_{n+1}}}}{a_n}-\frac{a_n}{{{a_{n-1}}}}=1({n≥2})$.
(1)求f(x)的解析式及曲线C的方程; 
(2)求数列{an}的通项公式;
(3)设${S_n}=\frac{a_1}{3!}+\frac{a_2}{4!}+\frac{a_3}{5!}+…+\frac{a_n}{{({n+2})!}}$,求$\lim_{n→∞}{S_n}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数f(x)=$\left\{\begin{array}{l}{1\;\;\;\;\;\;\;\;\;\;\;\;\;(x≤\sqrt{3})}\\{\sqrt{4-{x}^{2}}(\sqrt{3}<x<2)}\\{0\;\;\;\;\;\;\;\;\;\;\;\;\;\;(x≥2)}\end{array}\right.$,则${∫}_{-1}^{2010}$f(x)dx的值为(  )
A.$\frac{π}{3}$+$\frac{2+\sqrt{3}}{2}$B.$\frac{π}{2}$+$\frac{2+\sqrt{3}}{2}$C.$\frac{π}{6}$+$\frac{2+\sqrt{3}}{2}$D.$\frac{π}{2}$+$\frac{1+\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合M={-1,-2,3},N={-2,3,5},则(  )
A.M⊆NB.N⊆MC.M∩N={-2,3}D.M∪N={-1,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex和函数g(x)=kx+m(k、m为实数,e为自然对数的底数,e≈2.71828).
(1)求函数h(x)=f(x)-g(x)的单调区间;
(2)当k=2,m=1时,判断方程f(x)=g(x)的实数根的个数并证明;
(3)已知m≠1,不等式(m-1)[f(x)-g(x)]≤0对任意实数x恒成立,求km的最大值.

查看答案和解析>>

同步练习册答案