| A. | 关于点(-$\frac{π}{6}$,0)对称 | B. | 关于点($\frac{5π}{12}$,0)对称 | ||
| C. | 关于直线x=-$\frac{π}{6}$对称 | D. | 关于直线x=$\frac{5π}{12}$对称 |
分析 利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,得出结论.
解答 解:将函数y=2cos(x-$\frac{π}{3}$)的图象上所有的点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),可得y=g(x)=2cos(2x-$\frac{π}{3}$)的图象,
令x=-$\frac{π}{6}$,可得g(x)=-$\sqrt{3}$,故函数y=g(x)的图象不关于点(-$\frac{π}{6}$,0)对称,也不关于于直线x=-$\frac{π}{6}$对称,故排除A、C;
令x=$\frac{5π}{12}$时,求得g(x)=0,可得函数y=g(x)的图象关于点($\frac{5π}{12}$,0)对称,不关于直线x=$\frac{5π}{12}$对称,故B正确、D不正确,
故选:B.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| ξ | 1 | 2 | 3 |
| P | $\frac{1}{4}$ | 1-$\frac{3}{2}a$ | 2a2 |
| A. | -$\frac{1}{2}$或-$\frac{1}{4}$ | B. | $\frac{1}{2}$或$\frac{1}{4}$ | C. | -$\frac{1}{2}$或$\frac{1}{4}$ | D. | $\frac{1}{2}$或-$\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y2=2x | B. | x2=2y | C. | x2=y | D. | y2=x |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com