精英家教网 > 高中数学 > 题目详情
1.将函数y=2cos(x-$\frac{π}{3}$)的图象上所有的点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),得到函数y=g(x)的图象,则函数y=g(x)的图象(  )
A.关于点(-$\frac{π}{6}$,0)对称B.关于点($\frac{5π}{12}$,0)对称
C.关于直线x=-$\frac{π}{6}$对称D.关于直线x=$\frac{5π}{12}$对称

分析 利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,得出结论.

解答 解:将函数y=2cos(x-$\frac{π}{3}$)的图象上所有的点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),可得y=g(x)=2cos(2x-$\frac{π}{3}$)的图象,
令x=-$\frac{π}{6}$,可得g(x)=-$\sqrt{3}$,故函数y=g(x)的图象不关于点(-$\frac{π}{6}$,0)对称,也不关于于直线x=-$\frac{π}{6}$对称,故排除A、C;
令x=$\frac{5π}{12}$时,求得g(x)=0,可得函数y=g(x)的图象关于点($\frac{5π}{12}$,0)对称,不关于直线x=$\frac{5π}{12}$对称,故B正确、D不正确,
故选:B.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-$\frac{{{{(x-1)}^2}}}{2}$,g(x)=x-1.
(1)求函数f(x)的单调递增区间;
(2)若存在x0>1,当x∈(1,x0)时,恒有f(x)>mg(x),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.从集合A={1,2,3,…,2n+1}中,任取m(m≤2n+1,m,n∈N*)个元素构成集合Am,若Am的所有元素之和为偶数,则称Am为A的偶子集,其个数记为f(m);若Am的所有元素之和为偶数,则称Am为A的奇子集,其个数记为g(m),令F(m)=f(m)-g(m)
(1)当n=3时,求F(1),F(2),F(3)的值;
(2)求F(m).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知随机变量ξ的分布如下:
ξ123
P$\frac{1}{4}$1-$\frac{3}{2}a$2a2
则实数a的值为(  )
A.-$\frac{1}{2}$或-$\frac{1}{4}$B.$\frac{1}{2}$或$\frac{1}{4}$C.-$\frac{1}{2}$或$\frac{1}{4}$D.$\frac{1}{2}$或-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知正方形ABCD的边长为1,$\overrightarrow{AB}$=a,$\overrightarrow{BC}$=b,则a+b的模等于(  )
A.1B.2C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.角A为△ABC的一个内角,且sinA+cosA=$\frac{1}{3}$,则cos2A值为-$\frac{\sqrt{17}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线l过点P(2,3),且与两条坐标轴在第一象限所围成的三角形的面积为12,则直线l的方程为3x+2y-12=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设i为虚数单位,复数z满足|z|-$\overline{z}$=2+4i($\overline{z}$为z的共轭复数),则z=3+4i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知抛物线的参数方程是$\left\{{\begin{array}{l}{x=2t}\\{y=2{t^2}}\end{array}}\right.$(t为参数),则其普通方程为(  )
A.y2=2xB.x2=2yC.x2=yD.y2=x

查看答案和解析>>

同步练习册答案